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Chapter 1 

Introduction 

The general problem to be considered in this dissertation is the rapid deter- 

mination of the time that a particular distributional characteristic or parameter 

of a sequence of independent multivariate random data samples changes. This 

topic has been studied for applications in typical array processing fields such as 

radar, sonar and the processing of biomedical signals, as well as other fields such 

as fault detection in linear systems, signal segmentation in speech processing, and 

change point problems in statistics. The problem is described as estimating the 

time, P, that the change occurs under the statistical model 

FH(Öm)   i<P 
Xi~{ . (1) 

That is, Xu the data for time sample i, is independently drawn from the distri- 

bution FH {9Hi) for % < P and from the distribution F# (9Ki) for i > P where 



the cumulative distribution functions, F^ and FK, respectively depend on time 

dependent parameter vectors 9 Hi and 9K%- 

Page [1] provides a sequentially based method for the quick detection of the 

change from one distributional model to another when each distribution is ex- 

actly specified and stationary. Page's test may be best described as consecutive 

applications of Wald's sequential probability ratio test (SPRT). The SPRT's are 

designed to decide between two stationary, known hypotheses; the signal absent 

(null) hypothesis and the signal present (alternative) hypothesis. These assump- 

tions imply that the parameter vectors of equation (1) are known and constant, 

9m = OH and 6Ki = 9K. Appropriately designed SPRT's will eventually termi- 

nate, choosing the null hypothesis with a certain design probability, when there 

is no signal present. When this happens, Page's test restarts the SPRT assuming 

that the signal is not present yet. When the signal does occur, the current SPRT 

or a following SPRT will terminate at the alternative hypothesis with a certain 

design probability, thus, detecting the signal. Performance parameters, differing 

from the Neyman-Pearson concepts of detection and false alarm probabilities (or 

Type I and II error probabilities), are the average number of samples between 

false alarms and the average number of samples before detection. Page's test 

and Wald's SPRT are designed for simple or point hypothesis testing, meaning 

that the statistical distribution of the data is known exactly under both the null 



and alternative hypotheses. It is not, in general, clear how to proceed when ei- 

ther or both distributions are not completely characterized, yielding composite 

hypotheses. 

One application of this problem involves the detection of the onset of a signal 

received at an array of sensors in a background of interferences and noise. The 

signal may represent a radar or sonar target return, seismic disturbance or the 

failure of a mechanical system. In frequency domain array processing applica- 

tions, the data is usually modeled as a complex Gaussian random vector [2] which 

is completely characterized by its mean vector and covariance matrix. Before the 

signal arrives, the data is assumed to have a zero mean vector. After the signal 

arrives, under the deterministic signal model, the mean vector is characterized by 

an unknown complex scalar (representing the magnitude and phase of a sinusoid 

arriving at the array) multiplied by the array steering or replica vector. The array 

steering vector is assumed to be known and represents the relative amplitude and 

phase effects of a signal being propagated from a hypothesized position to the 

array sensors. In both cases, the covariance matrix of the data, representing the 

interfering signals and noise, is unknown and may be slowly varying. The sim- 

plest graphical example of this shift in mean scenario is the univariate or single 

sensor case shown in figure 1 with real rather than complex data. 

Research related to the array signal onset detection problem has congregated 

into three areas: failure detection in linear dynamical systems, the application 

of Page's test to simplified versions of the problem, and sliding block techniques 
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Figure 1: Example of a data sequence from a shift in mean type distributional 
change for univariate Gaussian data with non-stationary variance. 

assuming short term stationarity with Neyman-Pearson based testing for the 

presence of a signal. Basseville and Nikiforov [3] have recently presented a com- 

pilation of many existing algorithms for change detection, however, interference 

covariance matrices are treated as identity matrices or assumed to be known. 

There exists a substantial amount of research in the failure detection area as 

discussed by Kerr [4] and Basseville and Benveniste [5], with several sequential 

type solutions. A linear time-varying state model, with an additional additive 

impulsive component representing the failure or change in state, is typically used 

in this area as described by Brumback [6] and Kerr [7]. This is a particularly ap- 

pealing model for radar or sonar applications for it may accurately represent the 

non-stationarity of the interference and noise structure. However, since complete 

knowledge of the time-varying model parameters is assumed, it is not appropriate 

for the unknown, slowly changing interference and noise case. Fortunately, there 

exist similarities including unknown fault levels and the difficulties involved in 

choosing detection thresholds. 



As previously mentioned, Page's test provides a method for detecting the 

change from one known distribution to another known distribution. Clearly 

the unknown complex signal amplitude and the unknown interference covari- 

ance structure, as well as its non-stationarity, will cause substantial problems 

in applying this method. Analysis to date in this area includes applying Page's 

test to univariate (single sensor) cases with known interference and unknown 

signal characteristics. For this univariate case, Dyson [8], Broder [9], and Stahl 

[10] have considered locally optimal test statistics to avoid the unknown signal 

strength problem and have assumed ideal normalization, which is equivalent to 

complete knowledge of the interference structure. Blostein [11] has considered the 

univariate, ideal normalization case with a non-stationary signal of known form 

and unknown amplitude. A Bayesian formulation of the problem involves apply- 

ing a prior density to the unknown signal strength as described in Basseville and 

Nikiforov [3]. It seems that applying Page's test to the multivariate, unknown 

interference case has not been considered. 

In resolving the interference non-stationarity problem, a short block of data 

that is assumed to have stationary interference is often analyzed. Here the multi- 

variate case has been addressed as well as that of an unknown interference covari- 

ance structure. Generalized likelihood methods are used to form test statistics 

that are compared to thresholds for deciding signal presence in the Neyman- 

Pearson fashion (attempting to maximize the detection probability for a fixed 

false alarm rate). The block is then shifted along the data sequence, continually 



testing for signal presence. Typically a trailing block that is assumed to contain 

no signal is used to aid in the estimation of the interference covariance structure. 

A statistical analysis of this concept was first performed by Reed, Mallet and 

Brennan [12]. A detector having a constant false alarm rate (CFAR) property 

was first introduced by Kelly [13], followed by Robey [14] and Chen and Reed 

[15]. The detector based on the work of Reed, Mallet and Brennan [12] does 

not have the CFAR property. Therefore, detection thresholds will depend on 

the unknown interference covariance structure. The latter developments [13]-[15] 

provide methods for choosing thresholds which makes implementing the detector 

feasible. The CFAR property is the result of forming test statistics that have 

probability density functions (PDF's) that do not depend on the interference co- 

variance structure when no signal is present. Unfortunately, the PDF's of these 

test statistics, and thus detector thresholds, are often very difficult to derive and 

evaluate. 

In summarizing relevant existing research it is found that sequential tech- 

niques utilizing Page's test have been developed for known, stationary interfer- 

ence covariance structures in the univariate case allowing an unknown signal 

amplitude and phase. Those methods that deal with the multivariate, unknown 

interference covariance are based around non-sequential, Neyman-Pearson test- 

ing using statistics formed from short blocks of data over which the interference 

is assumed to be stationary. 
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This research proffers a technique that involves segmenting the incoming data 

sequence into non-overlapping blocks of equal size small enough that the data 

within each block may be assumed to be stationary. Prom each block, a uni- 

variate statistic is formed in such a fashion that its probability density function 

does not depend on the interference covariance matrix when no signal is present. 

This property is known as ancillarity and insures that any detector based on this 

statistic will have a constant false alarm rate. The ancillarity of the block level 

statistic to the interference covariance structure clearly solves the unknown inter- 

ference covariance problem at the expense of time resolution. The ancillarity also 

deals with the non-stationarity of the interference from block to block. Indirect 

dependence on the interference structure is allowed, when a signal is present, in 

the form of a scalar quantity, the signal-to-interference power ratio (SIR). There 

exists no optimal method for forming the block level statistic, so two approaches 

are considered that utilize generalized likelihood ratio techniques. 

Prom a microscopic point of view, the problem has now become a simple versus 

composite hypothesis test, in that the distribution of the block level statistic is 

known explicitly when no signal is present and only depends on the scalar SIR 

otherwise. This situation now resembles what Dyson [8] considered and is treated 

by using a locally optimal detector non-linearity. An alternative approach is to 

form a test based on a design signal-to-interference ratio in the hopes that the 

test will work well for a wider range of SIR. These two methods provide detector 

functions or non-linearities that are applied to the block level statistic prior to 



Submission to Page's test. Page's test will, with some delay, determine when 

the signal has occurred at the block level. Post block processing, in the form 

of a maximum likelihood estimate, provides higher resolution estimation of the 

onset time. A block diagram describing the proposed algorithm can be found in 

figure 2. 

Z.i    2    2.1 

Form Block Level Statistics 

J 

y.»,ift..iM.AiftjV 
MAN 

J 
T 

Page's Test 
Statistic 

Block Level Page's Test 

g(Z> 
Post Block Processing: 

• MLE for unknown start 
time on data prior to block 
detection. 

Apply Detector Non-linearity 

Figure 2: Block diagram of proposed algorithm. 

The basic problem addressed in this dissertation is the application of Page's 

test to the multivariate unknown, slowly varying interference covariance matrix 

and unknown complex signal amplitude problem. Although this is a specific 

problem, the solution is applicable to a particular subset of the general problem 

as stated in equation (1): those problems that have common unknown (nuisance) 

parameters before and after the change takes place, subject to the existence of 

block statistics that are ancillary for the nuisance parameters under the null 

hypothesis and depend on at most an unknown scalar strength parameter under 

the alternative hypothesis. 



This dissertation is organized as follows: Background information on Page's 

test, performance measures, and the choice of the detector non-linearity are dis- 

cussed in chapter 2. Chapter 3 contains two approaches for forming the block 

level statistic, the derivation of each statistic, and a statistical description in the 

form of conditional probability density functions. The locally optimal detector 

non-linearity derivation and optimal methods of choosing a bias for Page's test 

follow in chapter 4. The performance of the detectors is explored for varying 

SIR, number of sensors, and block size in chapter 5. The post block processing 

algorithm is derived and evaluated in chapter 6. A simulation, coupling the block 

detection utilizing Page's test to the post block processing, for a stationary and 

a non-stationary unknown interference scenario is found in chapter 7, followed 

by concluding remarks and recommendations in chapter 8. Several theorems are 

used throughout this dissertation with their statements and proofs found in ap- 

pendix A. A method for approximating the non-central Fisher's / probability 

density function is described in appendix B. Appendix C contains a summary of 

the probability density functions and selected properties of the random variables 

used in this dissertation. 



Chapter 2 

Page's Test Background 

The detector structure proposed in this dissertation utilizes Page's test [1] to 

determine the time that a distributional parameter of a sequence of random data 

samples changes from following a null hypothesis (H) to following an alternative 

hypothesis (K). Page's test uses, as a detector statistic, the difference between 

the current value of a cumulative sum statistic and the minimum value over all 

past sums. The cumulative sum statistic is the sum of a detector non-linearity, 

g, applied to the data, Xj, at time sample i, 

Si = E9(Xk). (2) 
fc=i 

Page's test compares the detector statistic, 

T{ = Si-mm Sj, (3) 

10 
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to a threshold, h, 

K 

% > h, (4) 

H 

to test for the alternative hypothesis. The detector statistic may alternatively be 

written in a recursive form, 

Ti = max{0,Ti-1+g(Xi)}. (5) 

The expected value of the detector non-linearity is required to be negatively 

biased under the null hypothesis and positively biased under the alternative, 

E[g\eH]<0<E[g\eK}, (6) 

where E [g\0H] and E \g\9K) respectively represent the expected value of the output 

of the detector non-linearity under the null and alternative hypotheses. 

2.1    Performance Measures 

The performance of Page's test, when applied to signal detection, is defined by 

the average number of samples between false detections when no signal is present, 

T, and the worst case average number of samples required before detection when 

a signal is present, D. The worst case condition is taken over all possible starting 

times for the signal and occurs whenever the statistic of equation (3) or (5) 

returns a value of zero. Broder [9] has shown that for large values of T, there 

is an exponential relationship between the average time between false alarms 
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and the average delay before detection. Prom this relationship an asymptotic 

performance measure is formed, 

»=lim^, (7) 

where the natural logarithm is used and h is the threshold used in Page's test, 

which is monotonically increasing in T. As shown by Broder [9] and Willett 

[16], approximations to T and D may be found by using standard techniques of 

sequential analysis, resulting in 

1 + ht (6H) - e"('«> 
t(eH)E[g\eH] w 

.eht{öH) 

t(eH)E[g\eH] 

and 

(9) 

DKEW (10) 

where t {OH) is the non-zero, unity root of the moment generating function of the 

detector non-linearity under the null hypothesis, 

E eWB)9\QH  =1. (ii) 

The approximations in (9) and (10) are valid for large values of the detector 

threshold, h, and are also, as seen in Broder [9], respectively lower and upper 

bounds. Applying these approximations to the asymptotic performance measure 

results in the approximation 

-   Ä    lim E [g\eK] [ht (9H) - log (-* (6H) E \g\9H])] 
h—*oo h 
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t(eH)E[g\eK] 

V- (12) 

As mentioned by Broder [9], the approximation, r), is also a lower bound on 

the asymptotic performance measure of equation (7). In this dissertation, the 

approximation to Broder's asymptotic performance measure, rj, will be termed 

the asymptotic efficacy. 

Prom equation (9) the threshold required to implement Page's test, for a 

specified average time between false alarms, may be approximated by 

log[-t(eH)E[g\eH]T] 
h   * tW) 

iogr + iog[-t(gg)E[g|gg]] (13) 

t(oH) • ^ 

2.2    Detector Non-Linearities 

The detector non-linearity may be optimally chosen so that for a lower 

bounded average time between false alarms, T > T0, the worst case average 

delay to detection is minimized. Lorden [17] proved this result in an asymptotic 

sense as T0 —> oo for a log-likelihood ratio detector non-linearity, 

~fx(x\6Ky 
I (x) = log (14) 

Jx(x\9H). 

where fx (x\9H) and fx {x\0K) are respectively the probability density functions 

of the data under the null and alternative hypotheses. Moustakides [18] extended 

the result to the non-asymptotic case. 
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The locally optimal non-linearity for a scalar signal strength parameter, 9, 

was considered by Dyson [8], 

and shown to be optimal for 9 near OH- Dyson actually used a first order Taylor 

series expansion of the log-likelihood ratio about 9jf, including a bias term on the 

order of (9 — OH)
2
, which results in a detector non-linearity that is still a function 

of the signal strength. Under the locally optimal or weak signal assumption, the 

bias term may be considered insignificant, and, if the signal strength is assumed 

to be constant, the result is a scale of equation (15). In order to apply (15) to 

Page's test, as seen in equation (6), a bias must be applied so that the mean 

of the detector non-linearity is negative when no signal is present. As seen in 

section 4.3, the bias may be chosen so as to minimize the signal strength required 

to achieve a desired asymptotic efficacy or to equivalently maximize the efficacy 

for a given signal strength. 



Chapter 3 

Block Level Statistics 

The proposed solution to the data stationarity and unknown interference pa- 

rameter problems involves segmenting the time series data into blocks of equal 

length. This allows each block of data to be compressed into a single univariate 

statistic having the predominant property of ancillarity with respect to the un- 

known interference parameters. A statistic formed from the random variable X 

with distribution fx (x\9) where 9 is a parameter, 

T = g(X), (16) 

is ancillary for 9 if its distribution, fT (£), does not depend on 9 [19]. The ancillar- 

ity avoids the stationarity problem in that, when no signal is present, a change in 

interference structure from one block to the next does not affect the distribution 

of the block level statistic. 

15 
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In addition to the ancillarity of the block level test statistic to the interfer- 

ence parameters, it is desired that the statistic provide adequate detection per- 

formance when applied to Page's test for a wide range of signal powers. Ideally, 

the formation of the univariate test statistic from the block of multivariate data 

would be performed by optimizing some detection criteria related to Page's test, 

for instance, the asymptotic efficacy. Unfortunately, there is no known method 

for optimally dealing with the unknown interference parameters. The strategy- 

adopted herein is to break the problem into two operations: first, compress the 

block level data into a univariate statistic that is ancillary for the unknown inter- 

ference parameters, allowing dependence only through a signal related parameter, 

the signal-to-interference ratio (SIR); next, apply a non-linearity to the univari- 

ate statistic that, in some sense, optimizes the detection performance of Page's 

test. 

In choosing a method of compressing the block data into a univariate statistic, 

the primary requirement is ancillarity with respect to the unknown interference 

parameters. Statistics that are invariant under a linear transformation of the 

array data under the null hypothesis provide ancillarity for the interference pa- 

rameters as well as the potential for a maximally invariant statistic. Scharf [20] 

indicates that only considering decision rules that are invariant to such transfor- 

mations is appropriate. The function that forms the univariate statistic from the 

block data is invariant under a linear transformation if the function has the same 

value for all linear transformations of original data [21] and [22]. The existence 
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of a maximally invariant statistic is not guaranteed and is, in general, difficult to 

test for. As an alternative to data compression under the premise of invariance, 

consider hypothesis testing in the presence of unknown parameters; the subop- 

timal, although usually very good, generalized likelihood ratio test (GLRT) is 

often used. This method of compressing block data into a univariate statistic 

may yield a statistic that is ancillary for the unknown interference parameters 

and is potentially good for detection in the Neyman-Pearson sense1   . 

When estimators of the unknown interference parameters exist in the same 

form when signal is present and absent, a block level statistic may be formed 

by substituting the estimates into a likelihood ratio test (LRT) or a GLRT for 

the unknown signal parameters where the interference parameters are assumed 

to be known. This method has been applied to adaptive array signal detection 

by Robey [14] and Chen and Reed [15], with the result termed an adaptive 

matched filter (AMF). In the following sections, the GLRT and the method 

involving the substitution of interference parameter estimates will be investigated 

for a deterministic signal with unknown complex amplitude. In particular, the 

function defining the compression of the block data will be derived and the block 

level statistic will be described statistically. The following sections apply these 

two methods of data compression to the unknown complex signal amplitude, 

unknown interference covariance matrix problem. 

^he GLRT maximizes an upper bound on the best case detection probability while also 
bounding the worst case false alarm probability. 
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3.1    GLR Statistic 

3.1.1    Derivation 

The deterministic signal model assumes that the frequency domain array data 

is statistically represented by an iV-variate complex Normal distribution, 

Xi-CJVMfld.E), (17) 

for i = 1,..., M, where M is the block size, 6 is the complex signal strength, d 

is a known mean vector, and £ is the interference covariance matrix. The nota- 

tion x ~ CMN {ß, S) indicates that the iV-by-1 random vector x has a complex 

Normal distribution with mean fi and covariance matrix S. Throughout this dis- 

sertation, bold lower case letters indicate vectors, bold uppercase letters indicate 

matrices, and the superscripts T and H respectively represent the transpose and 

complex conjugate and transpose operations. 

The generalized likelihood ratio (GLR) statistic for the deterministic signal 

model has the following form, 

max   /(XI0.E) 

max/(X|S) 

where 

9 = C1 (19) 

and 

Ü = {S G CNxN : £ > 0, S = EH} (20) 
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where C is the complex plane and £ > 0 indicates that the matrix £ is positive 

definite. The likelihood function of the data in the block is 

M        1 

i=l TVN  E 

^etr(-E-1l|(xi-öd)(xi-^) 

M 

,     (21) 

as found in Goodman [23].   The function etr represents an exponential trace 

operator, 

etr (A) = etrace(A\ 

and the iV-by-M matrix X is the combined data of the block, 

X= [xi x2---xM]. 

(22) 

(23) 

The GLR statistic for this problem may be found by a development similar 

to that of Kelly [13]. Kelly considered testing one data vector for the presence of 

a signal when independent secondary data with the same interference covariance 

structure was available to assist in estimation. The problem at hand results in a 

similar sufficient statistic probability density function. Proceeding, set 

M I       M 

(24) 
i=l 

and substitute the deterministic signal model probability density function, (21), 

into the numerator of (18), 

max   / (XI0, S) =   max 
6>ee,£en öee.Sen 

L-etr^E^BW) 
TT^IE 

M 

(25) 
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The maximization with respect to E is identical to that for determining the 

maximum likelihood estimate of an unknown covariance matrix for a Gaussian 

random vector with a zero mean. The specific result may be shown by equating 

the derivative, with respect to E, of the quantity inside the brackets in equation 

(25) to zero, 

d etrC-E^Bp))   _   etr [-E^B (8)] rs_lß ^^ _ £ 

as     TT^ISI 7T ̂ lEl 

•"I-^WIE-PW-EIS-S     (26) 
7T ̂ lEl 

where the following matrix derivatives, as found in Scharf [20], are utilized 

a 
J&M-PKS-1) 

# 

dE 
(27) 

and 

^tr(E-1A) = (-E-1AE-1)H. (28) 

Clearly, the derivative of equation (26) equals zero when E is chosen to be 

E = B (9). (29) 

This in turn causes the numerator of the GLR statistic to become 

M 

 f (X\9. £) = max     „.^ ..„e~N 

eee eee nN\B(8)\ 
(30) 

The maximization over 9 may be accomplished by minimizing the determinant 

of B (9). Proceeding, B (9) is written in terms of the sample mean and sample 

covariance matrix, 

M 

2=1 

=   S + (x - 0d)(x - 9d)H, 

x) + (x-0d)]H 

(31) 
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where 

and 

1     M 

M 

(32) 

I       M 

(33) 

As seen in Muirhead [24], the sample covariance matrix of equation (33), which is 

clearly hermitian, is positive definite with probability one if and only if M > N. 

Thus, a square root factorization may be applied where the square root matrix 

is also positive definite and invertible, 

s = TTH 

r > o. 

(34) 

The determinant of B (6) may now be factored into 

IB (ö)| TL 
H{T^H\-1 IN + T-\x- 6d)(5i- 9d)H(TH) ■iff 

i + (x - 0d)H(rH)-1r-1(x - 0d) 

= isi l + lx-MfS-^x-M) (35) 

where lN is the N dimensional identity matrix.   By completing the complex 

square in 6, 

IB (0)1   = |S| 

ISI 

1 + x^S^x - 0*d*S"1* - 0x* S^d + ÖÖ*dHS-1d 
2 

~HG-U l+x^S-1* 
d^s-] 

X 

d^S^d 
+ daS"id e 

d^x 
dHS-*d 

(36) 
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where the superscript * is the conjugation operator. Since S is positive definite, 

d^S-1d is greater than zero. Thus, |B (9)\ is minimized by choosing 

6 = 
d^s-1* 
d^S^d" 

(37) 

Under the maximization with respect to 6, the numerator of the GLR statistic 

becomes 

/(x|0,ij) = 
(ne) -MN \G\-M 

1 + x*S-1* - ldHS~^l2 
M- (38) 

The denominator of the GLR statistic is exactly equation (30) with 6 = 0, 

r    i        iM 

^f^^=[^lBW\e~N.    • 
Setting 6 = 0 in equation (35) and substituting |B(0)| into (39) yields 

(39) 

/(X|S) 
(7re) -MN |cl-M 

[l+X^S"1*] M- (40) 

By combining (38) and (40), the resulting GLR statistic is 

M 

A-GLR 
1 + x^S-ix d^S-id  J 

(41) 

3.1.2    Conditional Distribution 

The Mth root of the GLR statistic may equivalently be used in evaluating the 

conditional distribution, as it is a one-to-one transformation from AQLR, 

T = (AGLRV (42) 

The first step in statistically describing T for analysis is to form whitened data. 

This is accomplished by a full rank linear transformation of the block level data 
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so that the covariance matrix of the resulting transformed variables is the N 

dimensional identity matrix. The linear transformation is described by 

Yi = Axi, (43) 

for % = 1,..., M. Because the transformation is full rank, it may additionally be 

defined to rotate the mean vector to a scaled unit vector with weight only in the 

first element, 

ei = 1   0   •••   0 

T 
(44) 

This is accomplished by choosing the transformation matrix as 

A = pr-\ (45) 

where T is a square root of the data covariance matrix, S, 

£ = IT* (46) 

and P is an orthogonal matrix chosen so that 

A0d = flPr-M = ßeu (47) 

where ß satisfies 

\ß\2 = \0\2dHX-1d = s,. (48) 

where s is defined as the adaptive signal-to-interference ratio. This definition of 

the SIR is from the beam output of a minimum variance distortionless response 



24 

adaptive beamformer when the interference structure is known.   The whitened 

block data vectors are now distributed as 

yi~CNN{ßeulN). (49) 

The sample mean of the whitened data, 

i     M 

1=1 

=   Ax, (50) 

is distributed as 

y ~ CNN (ßeu JJIN) ■ (51) 

The sample covariance matrix of the whitened data has the form 

i     M 

c = ^E(yi-y)(yi-yf (52) 
i=l 

M -1        M 

Tr £ (X* - *) (X* - X)^ 
,H =    A 

=   ASA" (53) 

As seen in Muirhead [24] for real Normal random vectors, the sample mean 

vector and the sample covariance matrix of complex Normal random vectors are 

independent and the sample covariance matrix is the scale of a complex Wishart 

distributed matrix, 

MC ~ CWN (M - 1, IN). (54) 

The notation 

X ~ CWN (L, S) (55) 
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indicates that the iV-dimensional random matrix X has a complex Wishart dis- 

tribution with L degrees of freedom and scale matrix S. 

Applying this whitening transformation to equation (41), the Mth root of the 

GLR statistic becomes 

l+y^C^y 
T=  " '.- (56) 

l + ^C-iy--!^ 

Choosing the transformation to rotate all the weight of the mean vector into the 

first element of the transformed data vectors separates the data into a signal sub- 

set and a non-signal subset. The signal subset is comprised of the first element of 

each transformed data vector, while the non-signal subset contains the remaining 

data, 

Vai 

Ybi 

(57) 

where the subscript a represents the signal data and the subscript b represents 

the non-signal data. 

The transformed data may be grouped, column-wise, into the iV-by-M matrix 

Y = yi Y2 YM 
(58) 

Applying the signal-non-signal segmentation to this matrix yields 

Y   = 
Val     Ua2     •■■    VaU 

y&i y&2 • • • YbM 

T 
Ya 

(59) 
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where signal data is grouped into an M-by-1 vector, 

r nr 

y
° =      Val    Va.2    ■■■    VaM 

and non-signal data is grouped into an N — 1-by-M matrix, 

(60) 

y&i  y&2 YbM (61) 

Applying this segmentation to the transformed data sample mean vector and 

sample covariance matrix yields respectively, 

and 

C = 

Yb 

^aa     *~ba 

(62) 

Cba     C, 66 

(63) 

As seen in (56), the inverse of the sample covariance matrix is required, and may 

be segmented as follows: 

C -l D = 
daa     d6a 

(64) 

d-ba    D&6 

The relationships between the partitioned sample covariance matrix and its in- 

verse are easily derived and may be found, for example, in Muirhead [24], 

(65) 

(66) 

(67) 

d'al = Caa — cba^bb Cba 

dba = ~daa ^66 Cba 

c;b
l = D&6 - d~a d6ad6a 
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Applying the signal-non-signal segmentation to the quadratic and bilinear forms 

of equation (56) results in, 

efCT1^ 

efC^y 

=   d„ 

daaVa + d^b 

daa \Va\2 + Vafb^ba + fa^bafb + fb^bbfb- 

(68) 

(69) 

(70) 

Completing the complex square for ya in (70) yields the form 

y^C^y   =   daaya + d^dgfb^+y^^bb-d^dbad^yb 

=   d, -l daaVa+ dgyb   + Yb C6bV&- (71) 

Substituting these forms into (56) results in 

T = 
1 + yfC^yfc + daa Va + da*dgyb 

1 + ybcbbfb 
(72) 

Subtracting one from each side and scaling the resulting numerator and denomi- 

nator by 2M yields the form 

W 
2M(l + yb

HC;b
1yb) * \ya + d^dgfb 

= T — 1 = ^ '-  
2Md~} 

(73) 

Conditioned on observed values of the non-signal data, the numerator and 

denominator of W are independent Chi-squared random variables. The numer- 

ator is non-central with two degrees of freedom and the denominator is central 

with 2(M - N) degrees of freedom. This will be shown by forming the numerator 

and denominator of W as quadratic forms with the vector y*. Under certain 

conditions, the quadratic form involving either real or complex Gaussian ran- 

dom vectors has. a non-central Chi-squared distribution. The results for the real 
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case are commonly known and may be found in Searle [25]. The results for the 

complex case, found in Theorem A.l of appendix A, are similar. 

In order to express the numerator and denominator of W as quadratic forms, 

the sample covariance matrix, C, must be described in terms of the signal and 

non-signal data. Expanding the sum of equation (52) results in the form 

i     M 

yy 
H 

J_ YY*-yy*. 
M yy 

Applying the signal-non-signal segmentation yields 

(74) 

C = 
M 

(75) 

y*aYb    YbYb 

Jaya    y a     b 

Y6y^   Y6Yf 

Noting that the segmented sample mean vector of the transformed data may be 

expressed as linear combinations of the total data, 

VaVa     VaYb 

Va     = 

Yb 

M
X
 y°- 

lv
rl 

^Y61 , M 

(76) 

(77) 

where 1 is a column vector of ones, the elements of the sample covariance matrix 

may be expressed as 

-LyV - J-yTiiV 

M =     Mya^M- 

=      —VTPmY* 

nJ y: 

(78) 



Cba    = 

1 ^ 1 

MYby*a~Mybl y*a 
|T„* 

M h fr-***) * 
\dYb [IM ~ M11) Y*a 

YfePmY*, 

Cbb    = 

M 
1_ 

M 

J_Y yH 1 
M   b   b      M2 

MYb (IM
 ~ M 

_i 
M 

Y6Yf - -^Y6H
rYf 

Y6(IM--^llr)Yf 

YbPmY(, , 

where Pm is a dimension M projection matrix with form 

29 

(79) 

(80) 

Pm = IM — Tjll • (81) 

Defining 

«*  =   (i + yte) 

M 
_1_ 
M 

IJW + TJY& C66 Y6 1, (82) 

and applying equations (65)-(67) and (76)-(80), the numerator of W becomes, 

WN   = 2MK^ Va + djagyt 

= 2M*,;1 

=   2MK^ 

Va - cfaC66 y6 

1 
M ya 

1 - PmY6 Cbb yb 

=   2 

=   2 

y/MKb 

T       2 

T 
Ya 

1 
M' 

IM 
— "77-PraYj, C&6 Yfe 

=   2y^(p6pf)y:, (83) 
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where 

Pb = y/Mi% M 
:rmYh {-'hh   J^b 1. (84) 

If WN is to be a Chi-squared random variable, as seen in Theorem A.l, the 

product of the matrix in the quadratic form (i.e., p&pf) and the covariance 

matrix of the Gaussian random vector must be idempotent. The vector ya is 

formed from the first elements of the transformed data vectors, yh which are 

distributed as described in (49). Thus, the vector y* is distributed as 

V^CAM/^IM). (85) 

Since the covariance matrix of this Gaussian random vector is the identity matrix, 

if the matrices in the quadratic forms of the numerator and denominator of W 

are idempotent, the quadratic forms are Chi-squared distributed. Being the outer 

product of a vector with its conjugate transpose, the numerator quadratic form 

matrix has rank equal to one and is idempotent if the magnitude of the vector is 

one. Proceeding, the inner product of the vector, p6, with its conjugate transpose 

is shown to be equal to one, 

pfPb MKb~ 
1 

MKb 

1 
MKb' 

1. 

M IM 77^b ^bb  * fcPm 

IM + TT^Yh Chh YjPmYh Chh Y, 
M2 

IM + TTYh Chh Y, 

6 ^bb   x b^m JL b ^bb   I 6 

IM — TrPmY;, Cft6 Y6 

ifo-i-" 

M b ^bb   1 b 

(86) 
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This simplification requires noting that the vector, 1, is in the null space of the 

projection matrix Pm, 

Pml  =  (iTPm)T = 0 (87) 

and that, since Pm is a projection matrix, 

p2    _ p r M — xrm. (88) 

As seen in Theorem A.l the non-centrality parameter of WN is a function of the 

mean vector of y* and the matrix in the quadratic form of equation (83), 

6N   =   2|/?|2lTp6pfl 

2 
=   2 ßlTPb 

2 

= 2K;'M\P\2 

=   2Mps, 

M~ IM 
— T7^rnYb Cbb ^b 

(89) 

where p = K^
1
. Thus, conditioned on the non-signal data, WN is distributed as 

WN ~ Xl (6N). (90) 

The denominator of W is now placed into a quadratic form with the vector 

Yai 

W, D 2Md -l 

2M (caa - cgC^Cba) 
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2yJ 
M' 

m        TT^m^ft ^66   ±b*m Ya 

2yJ (Pm 

2yJP6y:, 

IM
 ~ MYfe Chb Yft Pm)y: 

(91) 

where 

Pö = Pr Ljtf 
YH(~i — 1"V" 

^   ^H,    I ft ■6 M>6 (92) 

The matrix in the denominator quadratic form is shown to be idempotent by 

equating the matrix to its square, 

p2 
cb =    P m IM - ~M~Yb Cbb Yb 

l_ 

M 
f-M — —Y6 C6b Y& 

2 
m~ M' 

1_ 

M' 
-if1 

—    Pm —Prri^b Cbb YfePm + T7    m    b ^bb   ( T7     b    m    b   J ^bb   *öPr 

IiW - j^"^6 ^M» Y& 

=    P6. (93) 

The non-centrality parameter of WD is 

6D = 2|/?|2lrP6l 

= 2|/?|2lTPm 

=   0, 

1 

M 
IM — T7^6 Cbb Yb Pml 

(94) 

thus resulting in a central Chi-squared distribution.   The degrees of freedom 

parameter, 

rD   =   2tr(P6IM) 
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=   2tr (Pro) - ^tr (PmYf C^1 Y6Pm) 
M 

2tr(IM-^:llQ 
_2_ 

M 
tr (YbPmYf C6-6

X) 

=   2 (M - 1) - 2tr (IJV-I) 

=   2{M-N). (95) 

Thus, conditioned on the non-signal data, WD is distributed as 

WD ~ A?(W-N) (0) (96) 

The ratio of a non-central Chi-squared random variable scaled by its degrees of 

freedom to a central Chi-squared random variable scaled by its degrees of freedom 

is distributed as a singly non-central Fisher's / distribution when the two random 

variables are independent. As seen in Searle [25] and Theorem A.2 of Appendix A, 

quadratic forms of, respectively, a real or complex Gaussian vector, are pairwise 

independent if the £ product of the matrices is zero, where bSig is the covariance 

matrix of the Gaussian vector (which is the identity ASB = 0, where A and B 

are the matrices involved in the quadratic forms). 

Consider the £ product of the matrices in the quadratic forms of W, 

=    p 

OC 

T 
X   Yffp-lYl 

IM 
_ Äf Y*> ^bb Yfe 

1 
M' IM ^Pmlfc ^bb   *£ 

"m TZ^mXh L/M.  Yi 
M m*-b ^bb   x b 

Pml — ~M^m^b ^bb Y>1 

PmYfC6"6
1Yblpf 

Ipf 

P? 

1_ 
M' 

PmYf CtfY*l - -^PmYf C^YfcP^f C^Yfcl P? 

PmYt Cbb Ybl - PmY6 C66 Yfcl P? 
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=   0. (97) 

Thus, conditioned on the non-signal data, WN and WD are independent and W is 

the scale of a non-central Fisher's / distribution. The distributional parameters 

of the numerator and denominator of W only depend on the non-signal data 

through the non-centrality parameter of the numerator, equation (89), in the 

form of the variable p. The probability density function of p is determined as 

follows: 

i + yfc^yt 
2yfyt 

y^iMCt)-1^ 

»cSibj+w*1)» 
U 

U + V 
(98) 

where 

77 = 2yfr Yb  (Off) 

and 

V = 2yf(MI)y6. (100) 

Utilizing Theorem A.5 of appendix A, U is seen to have a central Chi-squared 

distribution with 2(M — N + 1) degrees of freedom, 

u ~ Xiw-N+i)* (101) 

and is independent of y^, because the sample mean vector, y&, and the sample 

covariance matrix, C&&, are independent and MC&& ~ OVJV-I (M — 1,IJV_I). 
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Prom Theorem A.l of appendix A, V has a central Chi-squared distribution with 

2(N — 1) degrees of freedom, 

V~Xt{N-i), , (102) 

because % ~ CMN-\ (o, JJIN-I) and (MIJV-I) (jf^-N-i) is idempotent with 

trace equal to N - 1. The central Chi-squared distribution results from the 

non-centrality parameter, the quadratic form 0H (MI) 0, being zero. Since U 

and y& are independent, U and V are independent. Thus, using Theorem A.6 of 

Appendix A, (98) is beta distributed, 

p ~ ßeta(M-N + 1,N-1), (103) 

with probability density function, 

f (n) =  ^ß rpM~N (1 - p)N~2 , (104) iyP>     T{N-l)T{M-N + iy        V      ^      '      . K     ' 

for 0 < p < 1. Scaling the numerator and denominator of W by the degrees of 

freedom of their Chi-squared distributions yields a Fisher's / distribution. Thus, 

conditioned on p, 

wN 
7 — 2 AGLR    - Wn 

2{M-N) 

=   (M-N)W~f2a{M_N)(2Mps), (105) 

where the notation X ~ /0i& (c) implies that the random variable X has a singly 

non-central Fisher's / distribution with degrees of freedom parameters a and b 

and with non-centrality parameter c. 
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3.2    AMF Statistic 

As described by Robey [14], the adaptive match filter (AMF) statistic is cre- 

ated by forming a GLR statistic for the unknown complex signal power under 

the assumption that the interference covariance matrix is known. An estimate of 

the interference covariance matrix that is statistically independent of the GLR 

statistic is then substituted into this form. Robey considered the same primary- 

secondary data scenario as Kelly [13], as mentioned in section 3.1.1, where the 

secondary data is assumed to contain interference only and to be independent 

of the primary data. In the sequential block problem, it is seen that the GLR 

statistic derived in the above fashion is a function of the sample mean vector. 

Thus, the sample covariance matrix, which is independent of the sample mean 

vector in the Gaussian case, may be used as the interference covariance matrix 

estimate. It should be noted that, in the case of the deterministic signal model, 

the sample covariance matrix is not the maximum likelihood estimator of the 

interference covariance matrix. 

3.2.1    Derivation 

The GLR statistic for the unknown signal power as a function of the assumed 

interference covariance matrix has the form 

max/(X|0,£) 

AAMF&)= ege
/(X|S)      • (106) 
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Prom equation (21), the likelihood function of the data in the block may be 

described as 

/(X|0,£)   = 

/ 

•etr i-i 

exp -d^STM 

V 

S + xx^-fldx* 

-6*itdH + 69*ddH 

M 

(107) 

x- 
TT^IS, 

exp 

»d^E-1* 
t 

d^E^x 

d^s-1* 2 

d«S-id _t/ d^S-id + 

2 

- - x^E"1* - tr (S^S) 

-,M 

d^E^d 

exp   -d^E_1d 6 
d*£- 

x 
TT^IE; 

exp 
d^E-1* 

V 
d^E^d 

d^E-M 

2 

- - xHE-xx - tr (£-xS) 

-,M 

(.108) 

Maximizing this with respect to 9 occurs, as seen in (108), when 

0(E) = 
d^E^x 
d^E^d' 

(109) 

because the quadratic form, dHE_1d, is always positive since E is a positive 

definite matrix. The likelihood function of the data in the block when no signal 

is present is exactly equation (107) when 6 = 0, 

M 

/(X|E) ^_exp(-tr(E-1s)-x^S-1x) (110) 

Substituting (108) - (110) into the generalized likelihood ratio of (106) results in 

2\ M 

AAMF (E) = exp 
d*£- x 

d^E^d 
(111) 

J 
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The sample covariance matrix, S, is now substituted into a one-to-one transfor- 

mation of (111), resulting in the AMF statistic 

= log \AAMF (S)*l =    ,HQ_lt, • (112) ■'AMF dHS~l& 

3.2.2    Conditional Distribution 

In section 3.1.2, the distribution of the GLR statistic was determined con- 

ditioned on a set of non-signal data. The effects of the conditioning were rep- 

resented as a Beta distributed random variable. The distribution of the AMF 

statistic may similarly be determined by conditioning on the sample covariance 

matrix. Using the whitening transformation described by equations (43) to (54), 

the AMF statistic may be written as 

ZAMF   — 

where 

e^C-iei 

2Me^C-iei
y   ^     ei*C-2ei      )' 

l2y"Py, (113) 
pr 

fr'0-1*)' (114) 

2M 
r   = 

ei^C-V 
(115) 

and 

eiHC_2ei 
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Writing r in the form 

= 2     eSlNei (U7) 

e1^(MC)-1e1 

and noting, as seen in (54), that MC has a complex Wishart distribution with 

M - 1 degrees of freedom and the N dimensional identity matrix as a scale 

parameter and using Theorem A.5 of appendix A, r is seen to have a central 

Chi-squared distribution with 2 (M - N) degrees of freedom, 

x    r-*$„_",. (118) 

Based on the results of Reed, Mallet and Brennan [12], the parameter p (equation 

29 of [12]) has a Beta distribution, 

p~ßeta(M-N + l,N-l). (119) 

Both p and r are formed from the sample covariance matrix, leading one to 

believe that they may be correlated. Utilizing the data segmentation of equation 

(57) and the matrix partitioning of equations (63) and (64), the quadratic forms 

describing p and r may be expressed as 

ei^C-^i   =   daa, (120) 

and 

ei
HC-2

ei   =   d2
aa + dgdba 

= dla(i + cgc;b
2cba). (121) 
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Substituting these forms into p and r results in 

T = 2Md~l (122) 

and 

p=(l + cfaC6-6
2c6a)

_1. (123) 

Using equation (65) and the first result of Theorem A.3 of appendix A, which 

states that d~l = Caa.b is independent of cba and Cbb, it is seen that p and r are 

indeed independent. 

Noting that y has a covariance matrix equal to ^I;v, it is clear that its 

product with the matrix of the quadratic form in (113) is the outer product of a 

unit length vector with its conjugate transpose, 

M N ei^C-2
ei 

C-1^   \ /   C-Xei   \H 

Vnc-iei||2y viic-^iiis 

and is thus idempotent. The notation 

(124) 

||x||2 = Vx^x, (125) 

is used to describe the two-norm of a vector. Applying Theorem A.l of ap- 

pendix A, the scaled quadratic form in equation (113) has a non-central Chi- 

squared distribution with two degrees of freedom, 

2y*Py ~ X$ («5), (126) 



41 

and non-centrality parameter 

6   = 2MV*        2  '   \ß\< 
eiHC_2ei 

2Mps. (127) 

The AMF statistic may now be described as the scale of a non-central Chi-squared 

random variable conditioned on independent Beta and central Chi-squared dis- 

tributed random variables, 

ZAMF — —y> pr 
(128) 

where 

V ~ Xl (2Mps), (129) 

and r and p, respectively, have distributions as described in equations (118) and 

(119). The conditioning on the central Chi-squared random variable, r, may be 

removed in the following manner: 

fz(z\s,p)   =   Er[fz(z\s,p,r)} 

=   Er[prfv{prz\s,p,r)} 

=   Er 

e 2 -     (f)   {przfe-^ 

e-f (I) M* 
k=0   k\   2^v(k+iy p5Z —^J ~u,Z~i . ,xEr 

rfe+le-prz/2 (130) 

where fv {v\s,p,r) is, as described in (129), a non-central Chi-squared distribu- 

tion with two degrees of freedom and a non-centrality parameter 8 = 2Mps. The 
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resulting expectation over r may be simplified by utilizing the PDF of a Gamma 

random variable, requiring the general form 

Er rje-tr 
roo 

=    /    rje~trfr (r) dr 
Jr=0 
«»  rM-N-l+Je-(t+l)r 

1=0 T(M-N) 2M~N dT 

r(M-N+j)(t+l)-iM-N+j) 

x Jr=i r=° r(M-N+j)(t+±y(M-N+» 

T{M-N + j)2i 

rrdr 

(131) 
r(M-N){l + 2t)M-N+j' 

where it is recognized that the integral in the third line of (131) is the integral 

of the probability density function of a standard Gamma random variable and, 

thus, equals one. Substituting this result into equation (130) yields, 

e~f (f)fc T(M-N + k + l) (pz)k oo 

fz(z\s,p)   =   PY^ M-N+k+1 
k=0      k\      T(M-N)T(k + l)(l + pz) 

n, x - e-I(f)fc    T^ + k)    nfnf+k (%pz) 

(132) 

-+k-l 

n2 + n1(^pz)} ^i ^fc=o    kl    r(f + fc)r(f) 

where ni = 2 and n2 = 2 (M — JV). The last line of (132) may be recognized as 

the scale of a non-central Fisher's / distribution with degrees of freedom rti and 

n2 and non-centrality parameter 6. Thus, conditioned on the random variable p, 

the AMF block level statistic may be described statistically by 

JAMF {M-N)p U, (133) 

where 

U ~ /2,2(M-iV) (2Mps), (134) 
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and, as previously described, p is Beta distributed. 



Chapter 4 

Detector Non-linearities 

Once the data in the block has been compressed to a univariate statistic, 

it is possible to apply detector nonlinearities that may improve the sequential 

detection performance. As seen in sections 3.1.2 and 3.2.2, the conditional dis- 

tributions of the GLR and AMF statistics are functions of a scalar quantity s, 

the signal-to-interference ratio. Assuming that the signal-to-interference ratio is 

known, the optimal detector non-linearity has the form of a log-likelihood ratio, as 

described in section 2.2. When the signal strength is not known, and weak signals 

are of interest, the locally optimal detector non-linearity is indicated as a reason- 

able solution, as described in section 2.2. In this chapter, the optimal detector 

is proposed for a specified value of signal-to-interference ratio, termed the design 

SIR, and the locally optimal detector is derived for the GLR and AMF statistics. 

In order to apply Page's test to the locally optimal detector non-linearities, a bias 

must be applied so that the mean of the detector non-linearity is negative when 

44 
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no signal is present. It is seen that the bias may be chosen to equivalently mini- 

mize the signal-to-interference ratio required to achieve a prescribed asymptotic 

efficacy or to maximize the asymptotic efficacy for a prescribed SIR. 

4.1    Optimal Detector Non-linearity for a Design SIR 

Designing a detector that is optimal for a specified SIR may yield a test that 

has adequate performance over a wider range of SIR. The log-likelihood ratio 

form of the detector non-linearity requires the evaluation of the unconditioned 

probability density function (PDF) of the block level statistic under the null 

hypothesis (H), where s = 0, and under the alternative hypothesis (K) for s = s, 

where s is the design signal-to-interference ratio, 

~fz(z\s = s)' 
k (z) = log (135) 

h(z\s = 0)_ 

where fz (z\s) describes the unconditional distribution of the block level statistic, 

Z, for a signal-to-interference ratio equal to s. 

The evaluation of the unconditioned PDF of the block level statistics requires 

evaluating a one dimensional integral of the non-central Fisher's / density func- 

tion, which in turn is represented by an infinite summation. As described in [26] 

there exist several approximations to the cumulative distribution function of a 

non-central Fisher's / random variable. The most reasonable, in terms of compu- 

tational requirements and accuracy, seems to be the Three-Moment Approxima- 

tion proposed by Tiku [27]. Thus, the unconditional PDF's are evaluated using 
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Tiku's Three-Moment Approximation and numerical integration, as described in 

appendix B. 

4.2    Locally Optimal Detector Non-linearity 

The locally optimal detector non-linearity, 

fz (z\s) 
9 (*) = T,        y, (136) 

fz(z\s = 0)   ' 

requires forming the partial derivative of the block level statistic PDF when 

a signal is present with respect to the signal-to-interference ratio followed by 

normalization by the block level statistic PDF when no signal is present. 

4.2.1    GLR Statistic 

The unconditional distribution of the GLR block level statistic may be de- 

scribed as 

fz(z\s) = Ep[fz(z\s,p)], (137) 

where, as described in (105), the PDF conditioned on knowledge of p, fz (z\s, p), 

is a non-central Fisher's / distribution. Taking the partial derivative with respect 

to s inside the expectation over p and applying the chain rule for derivatives 

results in 

d 
ds 

fz(z\s) = Ep d8fziz]s'p)Ts 
(138) 
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where 6 = 2Mps is the non-centrality parameter of the Fisher's / density. The 

conditional PDF of the GLR statistic may be written as 

fz(z\s,p) = J2 
e-2 (I)" r(M-N + k + l)      {M-N)M~Nzk 

fc=0 Jfe!     T{M-N)T(k + l)(M-N + z) M-N+k+l ,    (139) 

from equation (105) and appendix C. Taking the partial derivative of the condi- 

tional PDF with respect to the non-centrality parameter, 6, requires the derivative 

forms 

d „-4** 
88 

esS" = - 
e-38k~l (k - f)      k > 1 

-4- k = 0 
(140) 

which are evaluated at 6 = 0. Thus, k = 0 and k = 1 are the only non-zero terms 

in the infinite sum, 

8_ 
88 

fz(z\s,p) 
(M-JV) 

M-N 

s=0 
2r (M - N) 

r(M-N+2)z 
(M-N+z) M-N+2 

T(M-N+1) 
— \M-N+i {M-N+z)* 

(M-N)M~N+1      \(M-N + l)z 

2(M-N + z)M~N+1 

(M-N)M~N+1 

2(M-N + z)M~N+1 

M-N + z 

z-1   \ 

1 + M-N. 

Combining this result with 

S-«* 
in equation (138) evaluated at s = 0 results in 

d_ 
ds 

fz{z\s) =   E, 
s=0 

Mp 

i( 1 + 
\M-N+1 1 + 

M-N, M-N . 

(141) 

(142) 
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MEp[p] (   z-1 
M-N+l  I i   i 2_ 

(l + ÄÄv) M-N. 

M-N + l      (   z-1 
, M-N+l / \M — iV+1    \   1     l Z 

(l + ÄÄv) \1+M-N. 

where the mean of p has the form (see appendix C) 

(143) 

„ . ,     M-N + l ,.AA. 
E,M =—M—• (144) 

Setting 6 = 0 in (139) and taking the expectation over p, as described in (137), 

results in 

fz{z\s = 0)   =   E„ 
r (M - JV + 1)     (M - AQ^"^ 

r(M-iV)    (M-N + z)M~N+\ 
1 (145) 

Here it is seen that the unconditional PDF of the GLR block level statistic, when 

no signal is present, is a central Fisher's / distribution. Now, forming the locally 

optimal non-linearity of equation (136) yields 

g(z)   =   (M-AT + l)-pi-. (146) 
1 "t" M-7V 

As seen in Broder [9], the asymptotic efficacy is invariant to scale changes of the 

detector non-linearity. Thus, the non-linearity of equation (146) may be scaled 

so that it approaches one as z approaches infinity. This results in the form 

9GLR{Z)   =   z+
Z~]_N- (147) 
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4.2.2    AMF Statistic 

The unconditional probability density function for the AMF block level statis- 

tic may be described as in equation (137). The locally optimal detector non- 

linearity may then be found by evaluating the partial derivative of the conditional 

distribution of the block level statistic as described in equation (138). The con- 

ditional distribution of the AMF statistic, as seen in equation (132), is a scaled 

non-central Fisher's / distribution. Taking the partial derivative with respect to 

the non-centrality parameter and setting it equal to zero yields results similar 

to that of the previous section where the k = 0 and k = 1 terms are the only 

non-zero terms in the summation, 

d_ 

ds 
fz(z\s,p) 

s=0 2r (M - N) 

T{M-N + 2)pz     T{M-N + 1) 

(1 + pz) 
M-N+2 

(M-N) (M-N + l) zp2 
(1 + pz) 

P 

M-N+l 

■(148) 
(l + pz)M-N+2       (l + pz)M-N+\ 

Combining this result with equation (142) in equation (138) evaluated at s = 0 

results in 

d_ 
ds 

fz (z\s) M{M-N) 
s=0 

{M-N + l) zEp {l+pz)M-N+* 

-E„ {\+pz)M-N+1 

=   M(M-N)[(M-N + l)zh3!2{z)-h2!l(z)},    (149) 

where 

hitj (z)   =   Ep 

/. 

(l + pz)M-N+\ 

r (M) P
M-N+i (i - pf~2 

M-N+j 
P=OT(N-1)T(M-N + 1) (1 + pz) 

dp.       (150) 
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By setting s, and therefore 6, equal to zero in the conditional PDF of the AMF 

statistic found in equation (132), and taking the expectation with respect to p, 

the unconditional PDF when no signal is present is formed, 

fz(z\s = 0)   =   (M-iV)E, 
(l + pz) 

=   {M-^h^iz). 

M-N+l 

(151) 

Placing equations (149) and (151) into equation (136), the AMF locally optimal 

non-linearity is formed, 

ff(Z) = M(M-iV + 1),^M-M^M. (152) 

As with the GLR locally optimal non-linearity, the AMF non-linearity is scaled 

so that its limit is one as z goes to infinity. It is first recognized that 

lim z^^h^ (z) lim E 
Z—KX> , , N M-N+j 

E p -(M-N-i+jj (153) 

Using the probability density function of the standard Beta distribution, the 

negative moments of p are seen to be 

E -K T(M)T(M-N-K + 1) 
T(M-K)T (M-N + l) 

(154) 

when 

K<M-N + 1. (155) 
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Applying equations (153) and (154) to the limit of equation (152) as z —> oo 

results in 

ZM~N+2h3,2 (Z)        Z^^h^zY 
lim g (z)   =    lim M (M-N+l) 

zM~N+lhhl(z)     zM~N+1hltl(z) 

=   M (M-N + l) 
E -{M-N-lj E „-(M-AT-1) 

E [p-W-N)] E \p~(M-N)] 

M(M-N) 

N 
(156) 

where 

E -(M-N-l) 

E\p-W-W] 

T{M)r(2)T(N)T(M-N + l) 
T(N + l)T(M-N + l)T(M)T (1) 
1 

N' 
(157) 

Scaling equation (152) by the inverse of equation (156) results in the locally 

optimal non-linearity 

N f(M_JV+1)2^iw_5i44 
9AMF (Z) = M-N 

(158) 
h,i(z)     htl(z)_ 

In general the locally optimal non-linearity for the AMF statistic is not strictly 

increasing. Thus, although it approaches one in the limit, the_maximum may 

actually be greater than one. The fry (z) functions do not pose serious imple- 

mentation problems as they may be easily evaluated using numerical integration 

and stored in tables. 

4.3    Optimal Bias For Page's Test 

As described in chapter 2 , when a detector non-linearity is applied to Page's 

test, the mean of the non-linearity must be negative when no signal is present and 
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positive otherwise. A log-likelihood ratio non-linearity satisfies this requirement, 

however, a locally optimal non-linearity may not. Stahl and Willett [10], following 

Dyson [8], have approached this problem by subtracting a bias proportional to 

the square of the signal strength. The proportionality constant is chosen by 

maximizing the fourth derivative of the asymptotic efficacy as the signal strength 

tends to zero. 

An alternative solution, proposed herein, is to choose the subtractive bias 

that achieves a desired asymptotic efficacy with a minimum signal strength. In 

actual detector operation, a particular performance is typically desired and the 

strength of an observed signal is rarely known a priori. Thus, tuning the detector 

to yield the desired performance at a minimum signal strength is an appealing 

approach. It will be shown that this method is equivalent to choosing the bias 

that maximizes the efficacy given a fixed signal-to-interference ratio. Both the 

proposed method and that of Stahl and Willett result in a minimum detectable 

signal level, which is the consequence of a negative detector non-linearity mean 

when signals below the detectable level are present. 

4.3.1    Derivation of the Optimal Bias 

Let gT (x) be the detector non-linearity to be applied to Page's test, 

9r (x) = go 0) - T, (159) 

where r represents the applied bias and go (x) is the original non-linearity. It is 

assumed that the non-linearity is operating on a univariate test statistic modeled 
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by the random variable X with probability density function fx (x). Requiring the 

mean of gT (X) to be negative when no signal is present and positive otherwise 

yields 

E0 [gT (X)] < 0 < Es [gT (X)}, (160) 

where the subscripts 0 and s on the expectations respectively represent the no 

signal and signal strength equal to s cases. Applying the bias form of the non- 

linearity results in 

E0 bo (X)] -r<0<Es[go (X)} - r, (161) 

or 

Eo [go (X)} <r<Es [g0 (X)}. (162) 

Equation (161) illuminates the minimum detectable signal phenomenon where, 

for a specific value of r > 0, there will be some SMDL for which only s > SMDL 

will satisfy the right hand inequality of (161). 

The detector non-linearity, gr{x), is now applied to the definition of the 

asymptotic efficacy (12), 

77   =   tTEs[gT(X)} 

=   tT(Es[g0(X)]-r), (163) 

which may be solved for the mean of the unbiased non-linearity when signal is 

present to yield 

Es [g0 (X)} = f + r, (164) 
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where tT is the non-zero, unity root of the moment generating function of the 

detector non-linearity with bias r. Thus, tT satisfies 

l = En 
Jtr9r(X)' (165) 

Substituting in the bias form of the non-linearity results in 

1   =   E0 
3tT(go(X)-r)' 

=   e-^rEn 3tr9o(X) (166) 

which may be solved for r to yield 

logEo [e*^o(x)j 
r = (167) 

Substituting this form of r into equation (164) yields 

Es [go (X)] = 
T) + log E0 e*rfloW 

(168) 

Under the assumption that there is a one-to-one relationship between the bias, 

r, and the corresponding moment generating function root, tT, minimizing the 

mean of the unbiased detector non-linearity when signal is present with respect 

to r may be equivalently performed by minimization with respect to tT. There 

is also an implicit assumption that Es [g0 (X)] is monotonically increasing in s so 

maximizing the latter is equivalent to maximizing the former. Proceeding, the 

partial derivative of (168) with respect to tr is seen to be 

£E. [*(*)] = I 
*? 

tr- 
Eofsb(X)e^)' 

Eo [e'^oW] 
r] - log E0 

JT9O(X) (169) 
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which is equal to zero when tT satisfies 

T) = t7 

En 'go (X) e«"°<*>' 

Eo [e'^°W] 
- log Eo JrgoW (170) 

To show that this is a minimum, consider the second derivative with respect to 

"T> 

Es bo (X)] 
277 ^ EoÜX)e^m 

Eo [^»W] 
-21ogE0[etTffo(x)" 

+ 
tTE0[e^°W]Eo[g0

2(X)e^°W] 

t2Eo [etr9o(X)f 

E0 [go (X) <fr»W] (EQ [<*»<*>] + tTE0 [^ (X) e^W]) 

t2E0 [etrfloW]2 

"EQ [gg (X) e**»W]      /EQ [g0 (X) <fr»(*> 

Eo [e^»W] \      Eo [e^wW] 

5o (X) e**> W 11 

En 

En 
T] - log EQ 

Jr9o(X) 
"T      E0 [e*^o(x)] 

S0
2(I)e^Wl '   /Eo[ft,We^w' 

E0 [e^oW] \      Eo [e^oW] 

(171) 

Noting that the first derivative is equal to zero when tT satisfies equation 

(170), convexity is assured at this tT when 

Eo [gl (X) e^x>]      /% \g0(X)e^^ 
E0 [etrwW] Eo [e^W] 

>0, (172) 

or, equivalently, 

En Jr90(.X) Eo k2 (X) eUgo{x)} > Eo \g0 (X) euM (173) 
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This inequality is shown to be true by using the integral form of the Schwarz 

inequality, as found in Hardy [28], 

2 
/ u2 (x) dx    v2 (x)dx> (    u (x) v (x) dx]  , (174) 

where equality holds only if the non-negative functions u and v, when appropri- 

ately scaled, are equivalent1   , 

Au (x) = Bv (x) (175) 

where A and B are not both equal to zero. Applying the Schwarz inequality to 

equation (173) where 

u(x)= eW>fx(x) (176) 

and 

v(x)=\g2(x)et^fx(x) (177) 

yields 

E JTgo(X) E g2 (X) e^°w' > E 

> E 2oPOe^x) l2 
(178) 

thus proving convexity and indicating that choosing tT to satisfy equation (170) 

minimizes the mean of the unbiased detector non-linearity, (168). The equality 

in equation (178) will hold only when 

9l (x) = c, (179) 

JTwo functions are equivalent if they are equal except on a set of zero measure. 
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where c is any real constant, which is not a reasonable detector function for the 

block level statistics considered in this dissertation. 

Now, supposing that the signal-to-interference ratio, and thus Es [g0 {X)], is 

fixed, the bias may be chosen to maximize the asymptotic efficacy of equation 

(163). Consider the partial derivative of equation (163) with equation (167) with 

respect to tT 

d                                 E0{90(X)e^oW 

dt?   =   Es[9oiX)] Eo[c^W] 

which is clearly set to zero by choosing tT to satisfy 

(180) 

V.\go(X)]   = E0 [e'^oW] 
(181) 

That this choice maximizes the asymptotic efficacy is insured by noticing that 

the second derivative 

d2 

ätf77   = 
Eok2POetT3oW En ,trgo{X) E0L(^)e^o(x)' 

E0 [etrtoWy 

<   0, (182) 

which provides concavity. The strict inequality follows from equation (178) where 

the detector non-linearity is not allowed to have the form seen in equation (179). 

The equivalence of the two methods described for choosing the moment gener- 

ating function root, and thus the detector bias, may be argued using a graphically 

oriented proof by contradiction. The equivalence is formulated by the following 

theorem where A = Es [go {X)]: 
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Theorem 4.1 If the detector bias is chosen at r = r*, to minimize 
A for a fixed value of the asymptotic efficacy, 77 = rf, yielding the 
minimum A*, then r* also maximizes 77 over all valid biases, r, for the 
fixed value of the unbiased detector non-linearity mean when signal 
is present, A*. 

Proof: Suppose that r* does not maximize the asymptotic efficacy, 77. Then there 

exists a bias, f^r*, such that 

Vf (A*) > 77r. (A*), (183) 

where ?7T (A) is the asymptotic efficacy for the detector with bias r and non- 

linearity mean A when signal is present. Using equation (163) this may be de- 

scribed graphically as seen in figure 3. 

V 

V 

r\ 

X     X 

Figure 3: Efficacy versus detector non-linearity mean when signal is present. 

Equation (183) results in 

tf(A*-f)   >   tT.(A*-r*) (184) 
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Now, consider the value of A that sets the asymptotic efficacy to rf for the bias 

7?f(X)     =     tf(X-f) 

=     V* 

=   tr* (A*-r*). (185) 

This is represented by point A in figure 3. Combining equations (184) and (185) 

results in the inequality 

tf (A* - f)   >   tf(\-f) 

A*   >   Ä, (186) 

which is evident from the graph of figure 3 when tf > 0. This result contradicts 

the assumption that the bias r* was chosen to minimize A over all biases that 

yield asymptotic efficacy equal to rf. Thus, choosing the bias to minimize the 

detector non-linearity mean when signal is present for a fixed asymptotic efficacy 

is equivalent to choosing the bias to maximize the asymptotic efficacy for a fixed 

detector non-linearity mean when signal is present. 

4.3.2    Implementation Concerns 

In practice, the asymptotic efficacy, a function of the mean time between 

false alarms and the mean delay to detection, would be prespecified. Prom the 

desired efficacy, equation (170) is inverted to determine the required value of tT. 

This value of the moment generating function root is used to determine the bias 
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required to achieve the desired efficacy by substitution into equation (167). As 

equations (167) and (170) are not of simple form, it is not clear if there exists a 

one-to-one transformation from 77 to tT or if equation (167) exists for reasonable 

Prom equation (170), when tT = 0, 77 = 0 as well. If 77 is a monotone, strictly 

increasing function of tT, then for each 77 > 0 there exists a unique tT > 0 that 

satisfies equation (170). To show that 77 is strictly increasing in tr, the partial 

derivative is shown to be positive, 

!*L   -   Eo [90 P0 e«*»<*>] + tTEp [gl (X) e^ 

du E0 [e*r«oW] 

irE0 k {X) e^soW]2     E0 \g0 (X) e^°^ 
Eo [e^Wy Eo [e^oW] 

=      U 
Eo }tTgo(X) Eo \gl (X) e^°W] - E0 \g0 {X) e^W 

Eo [e^o(x)y 

>   0, (187) 

when tT > 0, where the results of equation (178) are used restricting gQ (x) so 

that the strict inequality applies. 

The relationship between tT and r is described functionally by equation (167). 

Originally, tT was described as the value of rj > 0 where the moment generating 

function of gr (X), 

MT{t)   =   E0 
J(9O(X)-T) 

=   e-T*E0 \et9o{x)], (188) 
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equals one. The fact that tT > 0 is assured, as seen by applying Jensen's inequal- 

ity, because the mean of the biased detector non-linearity is negative, (160). For 

a fixed value of t > 0, say £*, MT (f) is a strictly decreasing function of r, as seen 

by the partial derivative of equation (188), 

%-MT{f)   =   -t*e-**TEo et'9o(X) 

dr 

<   0 (189) 

for all r. This implies that there can exist at most one value of r, say r*, such 

that MT» (t*) = 1. That this value exists is insured by the continuity of MT (t*) 

in r and the fact that 

lim 
MT (O = 0 (190) 

r —► oo 

and 

lim 
MT (O = oo (191) 

r —* —oo 

for t* > 0. This, however, does not insure that r* is positive. 

4.3.3    Example 

To illustrate the use of equations (170), (181), and (167) to determine the 

moment generating function root and the associated optimal bias, the GLR 

block level test statistic is evaluated using the GLR locally optimal detector 

non-linearity of equation (147). Curves relating the optimal bias to the desired 
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efficacy are shown in figure 4 for the adaptive dimension, AT = 1, and various 

block sizes. The SIR required to achieve a specified asymptotic efficacy is shown 

in figure 5 as a function of the applied bias. Evaluation of equations (170) and 

(167) results in the optimal choice of bias which is seen to require the minimum 

SIR. The efficacy achieved for various SIR values as a function of the applied 

bias is shown in figure 6 where it is seen that the optimal choice of bias results 

in the maximum efficacy. 
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Figure 4: Optimal bias as a function of the asymptotic efficacy for N = 1 and 
block sizes M = 5, 10, and 15 for the GLR block level statistic with the locally 
optimal non-linearity. 
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Figure 5: SIR required to achieve a specified efficacy as a function of the applied 
bias for N = 1 and M = 10 for the GLR block level statistic with the locally 
optimal non-linearity. 
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Figure 6: Efficacy achieved for specified values of signal-to-interference ratio as 
a function of the applied bias for N = 1 and M = 10 for the GLR block level 
statistic with the locally optimal non-linearity. 



Chapter 5 

Performance Analysis of Block Detection 

In chapter 3, the GLR and AMF block level statistics were derived. In chap- 

ter 4, the log-likelihood ratio detector non-linearity was described and the lo- 

cally optimal detector non-linearity was derived for the GLR and AMF block 

level statistics. In this chapter the combinations of the GLR and AMF block 

level statistics and the design SIR and locally optimal detector non-linearities 

are compared in terms of the asymptotic efficacy achieved for various signal-to- 

interference ratios. The best of the four combinations will then be examined as 

a function of the block size and the adaptive dimension which is the number of 

elements in each data vector. 

5.1    Preliminaries 

Adaptive algorithms, including the one presented in this dissertation, often 

require the estimation and inversion of covariance matrices. When the dimension 
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of the data is large, for instance an array with a large number of sensors, ade- 

quate estimation of the covariance matrix requires a large number of samples and 

the inversion of the covariance matrix estimate becomes numerically inhibitive 

as well as potentially unstable. Matrix preprocessing of the array data to a 

smaller dimension reduces numerical computations often with near equivalent 

average performance as shown by Owsley and Abraham [29] and also provides 

improved statistical performance as shown by Burgess and Van Veen [30]. Matrix 

preprocessing entails a linear transformation of P dimensional sensor data to N 

dimensional data using a constant N-by-P matrix. Gray's [31] beamspace prepro- 

cessing algorithm is of particular interest because the adaptive dimension can be 

dramatically reduced with minimal loss in performance. The performance may be 

quantified by the array gain improvement (AGI), as defined by Owsley [32], of the 

preprocessor as a function of the adaptive dimension. The signal-to-interference 

ratio for the preprocessed data is the array gain improvement multiplied by the 

SIR for the conventional processing case, which, for beam space preprocessing, 

has the form 

SIR(N) = AGI(N)SIR(N = 1). (192) 

As the adaptive dimension, N, is increased towards the total number of sensors, 

the AGI increases. In certain types of interference environments, in particular 

those with strong plane wave interferers, the array gain improvement can be quite 

large, for instance, on the order of ten decibels. 
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The efficacy, as described in chapter 2, is a function of the average number 

of samples between false alarms and the average delay before detection. By 

implementing Page's test on blocks of data, these parameters are denned at the 

block level. However, the detection algorithm must be designed based on the 

performance at the sample level. If M is the block size, if rjB is the asymptotic 

efficacy at the block level, and if TB and DB are respectively the average number 

of blocks between false alarms and before detection, the sample level asymptotic 

efficacy may be described as 

log (MTB) 
V MDB 

log (TB) +log (M) 

MDB        MDB 

=   VB     log(M) } 

M      MDB 

Varying DB results in upper and lower bounds on the sample level asymptotic 

efficacy in terms of the block size and block level efficacy 

M      '- M M K     J 

Equation (194) may be solved for the block level efficacy yielding the form 

Mr] - log (M) < 7)B < Mrj. (195) 

The following performance analysis describes the performance of the block de- 

tection algorithm in terms of either the signal-to-interference ratio required to 
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achieve a specified efficacy or one of the sample level efficacy bounds of equa- 

tion (194) achieved by a specified SIR. Evaluation of the efficacy requires knowl- 

edge of the mean of the detector non-linearity as a function of the signal-to- 

interference ratio and the moment generating function root of the detector non- 

linearity. Both of these require the probability density function of the block 

level statistic. Numerical integration is used to form tables of the PDF of the 

block level statistics when no closed form exists. Similarly, tables are formed for 

the design SIR non-linearities and the locally optimal non-linearity for the AMF 

statistic. 

5.2    Performance Analysis 

The first objective is to evaluate the performance of all the combinations 

of the block level statistics and the detector non-linearities. Figures 7 and 8 

respectively contain curves of the lower bound on the sample level efficacy for 

the design SIR and locally optimal non-linearities comparing the GLR and AMF 

statistics as a function of the signal-to-interference ratio for the block size M = 15 

and the adaptive dimensions N = 1, 5, and 10. The design SIR non-linearities 

were chosen to be optimal for a signal-to-interference ratio of s = 0 dB and the 

locally optimal non-linearities were implemented with a bias chosen to maximize 

the efficacy for s = 0 dB. Note that for the N = 1 case, the GLR and AMF 

block level statistics are identical. It is clear that for both non-linearities the 

GLR statistic outperforms the AMF statistic. 
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Figures 9 and 10 respectively contain curves of the lower bound on the sample 

level the efficacy for the AMF and GLR statistics comparing the design SIR and 

locally optimal non-linearities as a function of the signal-to-interference ratio for 

the block size M — 15 and the adaptive dimensions N = 1, 5, and 10. Both 

figures reflect equivalent performance at s = 0 dB, a result of the non-linearities 

being optimized by design or bias for this level. The locally optimal non-linearity 

performs worse than the design SIR non-linearity for the AMF statistic and yet 

performs slightly better than the design SIR non-linearity for the GLR statistic. 

The degradation increases as the SIR is displaced from the design value, especially 

for smaller values of SIR. The difference in performance at displaced SIR values 

decreases as the adaptive dimension increases for the GLR statistic. 

These comparisons indicate that the locally optimal detector non-linearity 

operating on the GLR statistic provides the best performance while the locally 

optimal detector non-linearity operating on the AMF statistic provides the worst 

performance. This is an appealing result because the GLR statistic has a simpler 

conditional probability density function, particularly when no signal is present, 

as the PDF is central chi-squared. Additionally, the locally optimal non-linearity 

for the GLR statistic has a closed form representation where the design SIR non- 

linearities and the locally optimal non-linearity for the AMF statistic require a 

quantized implementation. All further analysis will be performed for the GLR 

statistic with its locally optimal non-linearity. 
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It is now desired to analyze the performance of the detector as a function 

of the adaptive dimension. Figure 11 contains curves of the SIR required to 

achieve a particular value of efficacy as a function of the adaptive dimension. 

The SIR is chosen so that the block level efficacy meets the upper bound of 

equation (195). The bias chosen to implement the detector minimizes the SIR 

required to achieve the desired efficacy. Efficacies ranging from 0.1 to 0.9 are 

shown for a block size of M = 15 and adaptive dimensions varying from N = 1 

to N = 13. The utility of these curves is shown by the dashed curve superimposed 

on the constant efficacy contours. This curve is the signal-to-interference ratio 

of equation (192) for beamspace preprocessed array data as a function of the 

adaptive dimension of the preprocessor for a specific interference scenario and 

beamforming look direction. Varying the SIR at the output of a conventional 

beamformer, SIR(N = 1), simply shifts the dashed curve up or down which 

in turn indicates the adaptive dimension that provides the best performance. 

These curves may be used to determine the preprocessor type and dimension that 

provide the best performance in a specific interference scenario. The scenario for 

this example consisted of a thirty-two sensor, half wavelength, equally spaced 

line array beamformed broadside to the array. The interferences consisted of 

plane waves at —2, 2, and 5 degrees from broadside respectively at the levels 13, 

10, and 10 dB above spatially uncorrelated noise and a Butterworth angularly 

extended interfering signal at 4 degrees and 10 dB with a spreading coefficient 

of p — 0.5.  If the interference scenario was restricted to spatially uncorrelated 
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noise, the SIR curve would be constant as the adaptive dimension increased which 

would indicate that conventional beamforming should be used to maximize the 

efficacy. This result is expected as the conventional beamformer maximizes the 

beam output SIR for spatially uncorrelated background noise. 

In the previous analyses, the block size has been held fixed at M = 15. The 

block size may be limited from above by the degree of the non-stationarity of 

the interfering signals as well as the loss in time resolution and is bounded below 

by M > N + 1. The signal-to-interference ratios required to achieve the upper 

and lower bounds on the block level efficacy of equation (195) for an asymptotic 

efficacy of r\ = 0.5 for N = 1, 5, and 10 are shown in figure 12 as a function of 

the block size. The lower bound curve for the N = 1 case clearly indicates that a 

block size of M = 5 yields the minimum required SIR to achieve r\ = 0.5. These 

curves may be used to choose a block size that provides adequate performance 

without violating stationarity assumptions or substantial loss in time resolution. 
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Figure 7: Efficacy curves for the design SIR non-linearity for the GLR and AMF 
statistics for M = 15, N = 1, 5, and 10. 
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Figure 8: Efficacy curves for the locally optimal non-linearity for the GLR and 
AMF statistics for M = 15, JV = 1, 5, and 10. 
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Figure 9:  Efficacy curves for the AMF statistic for the design SIR and locally 
optimal non-linearities for M = 15, N = 1, 5, and 10. 
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Figure 10: Efficacy curves for the GLR statistic for the design SIR and locally- 
optimal non-linearities for M = 15, N = 1, 5, and 10. 



76 

Adaptive Dimension 

Figure 11: SIR required to achieve constant efficacy as a function of the adaptive 
dimension for the GLR locally optimal detector with a block size of M — 15. 
The dashed line represents the SIR for a broadside look direction for a specific 
interference scenario with beamspace preprocessing of a sixty-four sensor, half 
wavelength, equally spaced line array where the conventional beam output SIR 
is SIR {N = 1) = -3 dB. 
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Figure 12: Upper and lower bounds on the SIR required to achieve a sample level 
efficacy of 77 = 0.5 as a function of block size for N = 1, 5, and 10 for the GLR 
locally optimal detector. 



Chapter 6 

Post Block Processing 

Once Page's test, implemented using the detector non-linearities described in 

chapter 4, has indicated that a signal has been detected, further processing of 

the data may provide improved time resolution of the estimate of the onset time. 

In speech processing or classification applications, this will provide improved 

segmentation of short time duration signals. Page's test operates on the block 

level data, providing a coarse estimate of the onset time of the signal. Assuming 

that the interference is stationary over a length of time that straddles the signal 

onset time, a maximum likelihood estimate of the signal onset time may be found 

for the deterministic signal model described in section 3.1.1. 
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6.1    Derivation 

Let the block of data to be used for the estimation of the signal onset time 

be the iV-dimensional vectors 

Xi,X2). . .,XM, (196) 

Xj ~ < 

where M is the size of the block. The block size should be as large as possible 

without violating the stationarity of the interference. If the signal, with unknown 

complex amplitude 9, begins at sample P, the data will be distributed as, 

CAMO.E)    i<P (i97) 

CAfN(0d,£)   i>P 

under the deterministic signal model. The joint probability density function of 

all the data in the block is 

P-} exp (-xf S"1^)  M exp f- (x* - 9d)H E"1 (x* - 9dj 
/(X|£,*,P) = n   Vis,—-n—L 1 

t=l w     1^1 i=P 

=   etr < 

x 

7T^|S| 

£ xiXf + (M - P + 1) 00*dd* 
i=l 

-'ÖdEilpxf-flTfepXid* 

1 

VWJVI S|M 

1 
-etr < 

7T*|E 

1 
.ofr / 

1-1 
S - frödxf 

-ßP9*xpdH + ßP99*ddH 

M 

-iM 

(198) 
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where 

X 

s 

ßp 

Xp 

Xi     X2     •••     XM 

-.     M 

M21xixi, 

M-P + l 
M 

M 

■1 M 

(199) 

(200) 

(201) 

(202) 

and 

BP(9)   =   S-ßpödx.p{-ßpO*xpdH + ßpe0*ddH. (203) 

The maximum likelihood estimate for the unknown start time requires the max- 

imization of equation (198) with respect to S, 6, and P. It is recognized, as seen 

in section 3.1.1, that the maximization over S requires choosing 

£ = Bp(0). (204) 

The resulting likelihood function is 

f(x\±,9,P)   = 
-N M 

(205) 
_7TN\Bp(0)\_ 

which may be equivalently maximized over 6 by minimizing the determinant of 

Bp (9). The closed form of the determinant is seen to be 

|BP(0)|   =   |S-/?P0dxf - ßP9*xpdH + ßPee*ddH 

=   |S| IN + ßpS-1BEDH (206) 

where 

D 9d   xP 
(207) 
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and 

E = 
1    -1 

-1    0 

(208) 

Using the determinant identity 

|In + AB| = |Im + BA|, 

where A is n-by-m and B is ra-by-n, as found in Kailath [33], results in 

(209) 

\BP(e)\ = |s| 

=   |S| 

= isi 

IN + /?P(S-
1
DE)D 

I2 + /SpD^S^DE 

H 

(210) 

r                               -I "1 

h + ßp 
dn   du 1 -1 

d2i   d22 -1 0 

1 + ßp (du - di2)     -ßpdu 

ßp (d21 - d22)      1 - ßpd2\ 

S| [(1 + ßp {du - du)) (1 - ßpdu) + ßpdu (d2i - d22) 

1 + ßpdu (1 - ßpd22) - ßP (d2l + dl2) + ßpd21d12], (211) =   IS 

where I2 is the two dimensional identity matrix and 

D^S^D = 
du   di2 

d2\   d22 

(212) 

Substituting equation (207) into (212) results in 

dn   =   ÖÖ'cTS-M 

d12   =   6*dMS-xxp 

(213) 

(214) 
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d-22   =   xfS  1Xp, 
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(215) 

(216) 

which, when substituted into equation (211) and completing the complex square 

for #, results in 

|BP(0)|   =   \S\[l + ßP{G99*-ex^S-1d-e*dHS-1ip)' 

( 

=   ISI 

1-ft 

1-/5/ 

d^S"1- xP 

G 

d^s-1^ 
G 

+ ßPG 

+ ßpG 

00* _ 0XP° d 

_fl*d*S-ixp + d^S"1* 

0- 
d^s-^p 

G 
(217) 

where 

G = d^S-M (l - ^pxf S-^p) + /?p Id^S-^p 

If G > 0, equation (217) is minimized by setting 

d^S^xp 

(218) 

G 
(219) 

which results in 

f(x\±,e,p) = 
-\M 

(ire) -N 

{ire) 

S|(l-/3p 

NM 

Id^S-ixpl2 

G 

\M 1 + 
/?P d^S-^p 

d^S^d (1 - /^px^S-^p) 

M 

(220) 

The maximum likelihood estimate of P is found by choosing the value that max- 

imizes equation (220). This requires a search over values of P that do not violate 
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the G > 0 condition nor the requirement that the estimate of the interference 

covariance matrix, S, be positive definite. Considering the first requirement, 

0   <   G 

0   <   dHS-1d(l-ßP^S-1ip)+ßp\dHS-1xP 

dKS-xxp 
1   <   ßP I xf S~lxP - 

P   >   M\\- 

2\ 

d^S-M 

dHs-xd 
(d^S-M) (xf S-ixp) - \dHS-^p\2) + h 

(221) 

it is seen that a lower bound is placed on P. The bound itself is a function of P, 

thus, it must be evaluated for all potential start times from 1 to M. 

The second requirement was that the estimate of the interference covariance 

matrix, BP (9), be positive definite. This is shown by first proving that BP [V) 

is positive semi-definite for all 6 using a quadratic form and then by requiring 

the determinant of BP (#) to be greater than zero. By placing the block data 

columnwise into the iV-by-M matrix X, the matrix S and the vector xP may be 

written as 

s = i-xxH 
M 

(222) 

and 

xP = 
M-P + l 

XeP, (223) 
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where ep represents an M-by-1 dimensional vector with zeros in the first P — 1 

elements and ones elsewhere, 

0 

1 

1 

The matrix Bp (9) may now be written in the form 

BP(0)   =   S-/?pXpxp/ + /?p    xp   -0d xP   -0d 

H 

J_XX* ^-—2 
(M-P + l)' 

M 
X lM 

epef 
M-P+l 

XepefX* + /?pVVH 

X* + ßpWH, 

(224) 

(225) 

where 1^ is the M dimensional identity matrix and 

V = xp   -6d 

Applying this form of Bp (9) to a quadratic form in y results in 

yHBp (0)y = ^yHXUX5y + &>y*VVHy, 

where 

(226) 

(227) 

U = lM 
ePep 

M-P + l 
(228) 



85 

As the latter term in equation (227) is clearly the inner product of the vector 

V^y, it must be greater than or equal to zero, where the equality may occur 

because V is at most rank 2. The matrix X has rank equal to N because its 

product, S = j^XX^, has rank equal to N. The matrix U is recognized as a 

projection matrix with rank equal to M - 1. Thus, any quadratic form involving 

the matrix U must lie between zero and one, 

0 < z^Uz < 1. (229) 

The first term of equation (227) is a quadratic form of the matrix U and the M 

dimensional vector X^y. Thus, the quadratic form 

yHBP{6)y>0, (230) 

and the matrix Bp (6) is positive semi-definite for all 6. 

The necessary requirement that the determinant of BP (§) be positive yields 

the constraint, 

0   < BP(§)\ 

0   <   IS! 1-ft 
dHS-^P 

G 

0   <   G- ßp\dHS-lZp\ 

0   <   d^S-M (l - ßp*$S-Xxp) 

1 
P   >   M   1-- 

xfS^xp 
+ 1, (231) 
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which places a tighter bound on P than equation (221). The resulting maximum 

likelihood estimator of P may be written as 

(M-P+l) dHS-xP -u 
P = arg max ———-— -JTO-T-   > (232) Pe* M - (M - P + 1) xf S-!xP' 

where 

$ = {p:   1<P<M and P > M (l - -gg^-J + l} • (233) 

6.2    Performance Analysis 

The post block processing algorithm of equations (232) and (233) is examined 

in this section for performance as a function of the true start time, the signal-to- 

interference ratio, and the adaptive dimension. Two-hundred trials were run for 

the adaptive dimensions iV = 1, 5, and 10, and for block sizes M = 10, 15, 20, 25, 

and 30, excepting the combination N = 10 and M = 10. Signal-to-interference 

ratios ranging from s = —5 dB to 10 dB in one decibel increments were considered. 

For each case, the estimated start time was computed for each possible true start 

time. The results for the cases were very similar, exhibiting expected trends. 

Thus, the N = 5, M = 20 case is used to present these trends. Histograms for 

several true start times for the s = 5 dB case are found in figure 13. Note that 

when the signal starts in the latter portion of the block (the upper histogram), 

there is a skewness to the left that is larger than the corresponding skewness to 

the right displayed by the histogram of the signal that starts in the initial portion 

of the block (the lower histogram). This may be explained by there being very 
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few samples with signal present when the signal starts in the latter portion of the 

block, causing a more difficult estimation problem. Figure 14 contains histograms 

for a fixed true start time for signal-to-interference ratios varying from -5 to 10 

dB in three decibel increments. The mean squared error is estimated from the 

histograms and shown in figure 15 as a function of the true start time for SIR 

values of -5, 0, 5, and 10 dB. The asymmetry of the error noted in the histograms 

is also seen here where the mean squared error is largest for signals that start in 

the latter quarter of the block. Weak signals incur larger errors when they start 

near either boundary, with the best performance somewhere near the middle of 

the block. The mean squared error is averaged over all possible true start times 

and plotted against the signal-to-interference ratio for the adaptive dimensions 

N = 1, 5, and 10 in figure 16. Here it is seen that there is minimal loss between 

the N = 1 case and the N = 5 case indicating that the performance losses 

associated with processing multivariate data do not accrue rapidly. 

6.3    Invariance 

In considering equations (232) and (233), it is not clear if the post block 

maximum likelihood estimate of the signal onset time is invariant to the inter- 

ference covariance matrix. By applying the whitening transformation of section 

3.1.2 described by equations (43)-(55) it may be shown that the probability den- 

sity function of the forms that describe the maximum likelihood estimator of the 
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signal onset time, 

dHS~lxp (234) 

and 

xfS_1xp, (235) 

depend on the interference covariance matrix only through the parameter ß de- 

scribed by equations (47) and (48). The parameter ß may be thought of as 

a whitened complex strength parameter with magnitude equal to the signal-to- 

interference ratio. The dependence of the post block processing performance on 

the SIR is acceptable. The effect of the dependence on the whitened phase of the 

signal is not clear, however, it is much better than dependence on an N dimen- 

sional covariance matrix. The simulations of section 6.2 were conducted with an 

identity matrix for an interference covariance matrix and for ß — y/s. 
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Estimated Start Time 

Figure 13: Histograms of the onset time estimate for several true start times for 
an SIR of 5 dB for N = 5 and M = 20. The asterisk represents the true start 
time. Each histogram has been scaled by the same value to facilitate comparison. 
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Figure 14: Histograms of the onset time estimate for several SIR values for N = 5 
and M — 20. The asterisk represents the true start time. Each histogram has 
been scaled by the same value to facilitate comparison. 
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Figure 15: Mean squared error of the onset time estimate for several SIR values 
as a function of the true start time for N = 5 and M = 20. 
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Figure 16: Mean squared error of the onset time estimate averaged over all true 
start times for N = 1, 5, and 10 for M = 20 as a function of the signal-to- 
interference ratio. 



Chapter 7 

Block-Post Block Simulation 

The block detection algorithm proposed and analyzed in chapters 3 - 5 and 

the post block processing to improve the signal onset time estimate of chapter 6 

are applied to simulated array data for a stationary and a non-stationary inter- 

ference scenario.  The array and signal processing consist of a half wavelength, 

equally spaced, thirty-two sensor line array with frequency domain plane wave 

beamforming to a broadside look direction. As suggested in chapter 5, beamspace 

preprocessing is used to reduce the adaptive dimension to N = 1 providing con- 

ventional beamforming, and to iV = 5 yielding a potential improvement due to 

adaptive processing if warranted by the interference scenario.   This simulation 

study will be conducted in two parts: first, the block detection performance will 

be evaluated by examining histograms of the time between false alarms and the 

time before detection as well as the average time before detection versus sig- 

nal strength; second, the combined block detection-post block processing will be 
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evaluated by histograms of the estimated start time and by considering the mean 

squared error as a function of the signal strength. 

7.1    Interference Scenario 

The stationary interference scenario consists of the following: plane wave 

interferences at 2 degrees and 10 dB, 5 degrees and 10 dB, and —2 degrees and 

13 dB, a Butterworth angularly spread interference at 4 degrees and 10 dB with 

a spread parameter of p = 0.5, and spatially uncorrelated noise at 0 dB. All 

angles are from broadside to the array. A scale is applied to this interference 

scenario so that the conventional beam output interference power is 0 dB at 

broadside to the array. Thus, evaluating signal strengths ranging from —5 to 

5 dB is effectively considering signal-to-interference ratios ranging from —5 to 

5 dB for a conventional beamformer (N — 1). The non-stationary interference 

scenario begins with the stationary scenario and has linear changes in the angular 

position, strength in decibels, and spread of the interference signals as found in 

table 1. The Butterworth angularly spread interference results in a plane wave 

when p = 1 and in spatially uncorrelated noise when p = 0. The interference 

scenario is periodic with period equal to 3000 samples. Over one period, the beam 

output interference power for conventional beamforming (N = 1), for beamspace 

preprocessing to N = 5 beams, and for fully adaptive beamforming as a function 

of time may be found in figure 17. The difference between the conventional beam 
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output interference power and either adaptive beam output interference power 

(in dB) is the array gain improvement for the respective adaptive beamformer. 

Signal Time Index Angle (deg) Strength (dB)   Spread 

1 
1 -2° 13 1.0 

1000 -1° 10 1.0 
2000 -3° 15 1.0 
3000 -2° 13 1.0 

2 
1 2° 10 1.0 

500 3° 5 1.0 
2000 2° 13 1.0 
3000 2° 10 1.0 

3 
1 4° 10 0.5 

2000 8° 15 0.3 
3000 4° 10 0.5 

4 
1 5° 10 1.0 

2000 3° 10 1.0 
3000 5° 10 1.0 

5 1 n/a 0 0.0 
3000 n/a 0 0.0 

Table 1:   Non-stationary interference scenario.    The interference parameters 
change linearly between the specified time indices. 

7.2    Block Detection Performance 

The GLR locally optimal detector is implemented with an average time be- 

tween false alarms of T = 20 blocks and a block size of M = 10 samples. The 

thresholds were set by using equation 8 of chapter 2. Histograms of the time 

between false alarms for the stationary and non-stationary interference scenarios 

are found respectively in figures 18 and 19. The observed average time between 

false alarms was approximately 25 times the design value for N = 1 and 10 times 
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Figure 17: Beam output interference power for conventional beamforming (N = 
1), for beamspace preprocessing to TV = 5 beams, and for fully adaptive beam- 
forming for the non-stationary interference scenario. 
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the design value for N = 5.   As the design value is only a lower bound, the 

difference is acceptable, however, tighter bounds would provide more accurate 

threshold computation. As expected, the time between false alarms was slightly 

smaller for the non-stationary interference due to the lack of stationarity within 

each block. The average times between false alarms are still substantially larger 

than the design value although this may be affected by increasing the block size. 

Histograms of the number of blocks before detection for the stationary and 

non-stationary interference scenarios are found respectively in figures 20 and 21 

for the N = 1 and N = 5 cases for several signal strengths. There seems to be 

minimal difference between the stationary and non-stationary interference sce- 

narios.  As seen in figure 17 the beam output interference power only changes 

about 0.75 dB during the first 300 time samples (30 blocks) for the N = 1 and 

N = 5 case, which may explain the minimal difference. The average number of 

blocks before detection, as a function of the signal strength, is found in figure 22. 

Again, the minimal difference between the stationary and non-stationary interfer- 

ence scenarios is observed where the non-stationary case seems to have a slightly 

smaller average time before detection. This may be accounted for by the increase 

in the variance of the block level statistics due to the non-stationarity of the 

interference over one block as in the smaller time between false alarms. The pre- 

dicted performance, calculated by using the approximation of equation 10 found 

in chapter 2, is shown in the figure as well, where it is seen that the predicted 

values are no more than one block below the observed values. The advantage in 



98 

preprocessing the array data to a specific dimension is evident in that for signal 

strengths below 0.5 dB, the N = 5 case results in better detection performance 

while for larger signal strengths, the N = 1 case slightly outperforms the N = 5 

case. This may also be observed in the required SIR curves in figure 11 of chap- 

ter 5 where the best preprocessor dimension may change with signal strength. 

7.3    Block-Post Block Performance 

A block of data thirty samples long immediately previous to the block detec- 

tion, including the block in which detection occurred, is subjected to the post 

block processing algorithm of chapter 6. Histograms of the onset time estimate 

of the combined block-post block processing algorithm for the stationary and 

non-stationary cases are found respectively in figures 23 and 24 for various sig- 

nal strengths. The histograms are referenced to the true starting time, which 

was a randomly selected position within a block. The weaker signal strength 

cases are clearly biased to the right, which is the result of a delay in the block 

detection large enough so that the true start time occurred outside of the data 

segment being processed. Minimal difference is noticed between the stationary 

and non-stationary interference scenarios. 

The mean squared error of the onset time estimate as a function of the signal 

strength for the stationary and non-stationary interference scenarios and the 

predicted performance are found in figure 25. The N = 5 case produced less 

mean squared error than the N = 1 case as was expected due to the improvement 
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indicated by the array gain improvement of this interference scenario. The error 

at low signal strengths is more than an order of magnitude greater than the 

predicted value, particularly for the N = 1 case, as a result of the larger delay 

in detection previously described. The error for signal strengths greater than 0 

dB is on the same order as the predicted values. It is not expected that the 

error be exact, as the predicted value is the mean squared error averaged over 

all possible start times which does not exactly represent what is occurring in the 

simulation. As seen in the histograms of the number of time samples before block 

detection occurs found in figure 26, the true starting time of the signal is not even 

approximately uniformly distributed in the segment of data that is applied to the 

post block processing (the first thirty samples). From this figure it is also clear 

that at low signal strengths there are a substantial number of trials where the 

post block processing segment does not include the true start time, leading to an 

increased mean squared error. 

Due to the sequential nature of the block detection algorithm, the average 

time before detection increases as the signal-to-interference ratio decreases. This 

has a very debilitating effect on the post block processing leading to substan- 

tial errors. Increasing the length of the segment of data submitted to the post 

block processing may ease this, however, the length is likely to be limited by the 

stationarity of the interference. An alternative may be choosing the segment of 

data submitted to the post block processing through the use of an estimate of 
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the signal-to-interference ratio over the block in which detection occurs and the 

predicted time before detection. 
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Figure 18: Histograms of the number of blocks between false alarms for N = 1 
and N — 5 with a block size of M = 10 for the stationary interference scenario. 



101 

60 

50 

40 - 

30 - 

20 

10 

0 
100 

1°00 

Non-Stationary 
-1 1 1—i—i—i—m  

# Trials = 500 

N = 1 

M = 10 

Mean = 489.1 

■■■i—■■  i     ■    iii  

101 

# Trials = 500 

N =5 

M = 10 

Mean = 190.8 

n 

1 1 I.   Ml I II 'I   '     I  I I   il   I l 

102 

Number of blocks between false alarms 

103 

'i '   i i i ii i 

101 102 

Number of blocks between false alarms 

103 

'   i   'i     i   i   i i 
104 

' ' I 1 I   I   I I I 
104 

Figure 19: Histograms of the number of blocks between false alarms for N = 1 
and N = 5 with a block size of M — 10 for the non-stationary interference 
scenario. 
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Figure 20: Histograms of the number of blocks before detection for N = 1 and 
N = 5 with a block size of M = 10 for various signal strengths for the stationary- 
interference scenario. Each histogram has been scaled by the same value to 
facilitate comparison. 



103 

Non-Stationary 

s =5dB 

s = 3dB 

s = 1 dB 

-1 dB 

s = -3 dB 

s = -5 dB 

# Trials = 200 

iV = 1 

M = 10 

6 8 10 

Number of blocks before detection 

12 14 

i = 5 dB 

5 = 3 dB 

s = 1 dB 

-1 dB 

5 = -3 dB 

s = -5 dB 

Number of blocks before detection 

# Trials = 200 

iV = 5 

M = 10 

10 12 14 

Figure 21: Histograms of the number of blocks before detection for N = 1 and 
N = 5 with a block size of M = 10 for various signal strengths for the non- 
stationary interference scenario. Each histogram has been scaled by the same 
value to facilitate comparison. 
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Figure 22: Average number of blocks before detection for N = 1 and N = 5 with 
a block size of M = 10 as a function of signal strength for the stationary and 
non-stationary interference scenarios and the predicted performance. 
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Figure 23: Histograms of the post block, maximum likelihood estimate of the 
starting time referenced to the true starting time for N = 1 and N = 5 with 
a block size of M = 30 for various signal strengths for the stationary interfer- 
ence scenario. Each histogram has been scaled by the same value to facilitate 
comparison. 



106 

Non-Stationary 

s = 5 dB # Trials = 200 

s = 3 dB 
N = 1 

s = 1 dB 
MLE Block size = 30 

-O-^ * = -1 dB 

JTT-fa 
5 = -3 dB 

-5 dB 
=^= 

-10 10 

Estimated start time 

15 20 25 30 

5 =5 dB # Trials = 200 
* '   ■ 

j = 3 dB TV =5 

j = 1 dB 
MLE Block size = 30 

=L*-I—i—1= 
s = -1 dB 

s = -3 dB 

s = -5 dB 

^ -10 -5 10 

Estimated start time 

15 20 25 30 

Figure 24: Histograms of the post block, maximum likelihood estimate of the 
starting time referenced to the true starting time for N = 1 and N = 5 with a 
block size of M = 30 for various signal strengths for the non-stationary interfer- 
ence scenario. Each histogram has been scaled by the same value to facilitate 
comparison. 
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Figure 25: Mean squared error of the post block, maximum likelihood estimate of 
the starting time for N = 1 and N = 5 with a block size of M = 30 as a function 
of signal strength for the stationary and non-stationary interference scenarios and 
the predicted performance. 
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Figure 26: Histogram of the number of time samples before block detection occurs 
for N = 1 and N = 5 with a block size of M = 10 for various signal strengths for 
the stationary inteference scenario. Each histogram has been scaled by the same 
value to facilitate comparison. 



Chapter 8 

Conclusion 

This dissertation has considered the general problem of the determination 

of the time that a change occurs in the structure or parameterization of the 

distribution of a sequence of random vectors when some subset of the parameters, 

nuisance parameters, are common to both the before change (null) hypothesis 

and the after change (alternative) hypothesis. The proffered solution entails 

segmenting the data into non-overlapping blocks, from which univariate statistics 

are formed that are invariant to the nuisance parameters under the null hypothesis 

and may depend on at most an unknown scalar strength parameter under the 

alternative hypothesis. The unknown signal strength parameter was treated by 

applying a locally optimal non-linearity prior to submission to Page's test for 

the detection of the change. Once Page's test has determined that a change has 

occurred, post block processing is performed to improve the time resolution of 

the change time estimation. This structure is appealing for it adequately deals 

109 
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with non-stationary nuisance parameters, as the block level statistic is invariant 

to nuisance parameter changes from block to block under the null hypothesis. 

A typical radar or sonar application, the detection of the onset of a narrow- 

band signal of known frequency with unknown amplitude and phase arriving at 

an array of sensors, was considered. The block detection performance of two 

block level statistics, a generalized likelihood ratio (GLR) statistic and an adap- 

tive matched filter (AMF) statistic, applied to a log-likelihood ratio for a specified 

SIR and to a locally optimal non-linearity, was determined as a function of the 

signal-to-interference ratio. The GLR statistic combined with the locally opti- 

mal non-linearity outperformed the other statistic-non-linearity combinations in 

terms of the asymptotic efficacy. Additionally, the GLR-locally optimal detector 

has the desirable properties of a closed form detector non-linearity and a stan- 

dard probability density function, the central chi-squared distribution, when no 

signal is present. Implementation of the detectors utilizing the locally optimal 

non-linearity required choosing a bias that insures that the mean of the detector 

non-linearity is negative when no signal is present. A method for choosing the 

bias for a general non-linearity that minimizes the signal strength required to 

achieve a specified asymptotic efficacy, or to equivalently maximize the asymp- 

totic efficacy for a specified signal strength, was derived. The SIR required to 

achieve a specific asymptotic efficacy was found as a function of the adaptive di- 

mension for the GLR-locally optimal detector. Here it was seen that increasing 
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the adaptive dimension increases the SIR required to achieve a specific perfor- 

mance level. Preprocessing the array data by a rank reducing, constant, linear 

transformation provides a method for changing the adaptive dimension of the 

signal detector algorithm. This also affects the SIR that the detector is subjected 

to, as a function of the preprocessing structure and the interference scenario. The 

utility of the required SIR curves was shown by the superposition of the effective 

SIR achieved by varying the adaptive dimension of beam space preprocessing of 

the array data for a specific interference scenario. The adaptive dimension pro- 

viding the SIR that yields the largest asymptotic efficacy was indicated as the 

best preprocessor for the observed interference scenario. 

A post block processing algorithm, in the form of a maximum likelihood 

estimate of the signal onset time, was derived for the deterministic signal model 

using the sample level data previous to the block detection, up to the maximum 

limit of stationarity. The performance of the estimator, in terms of mean squared 

error, was seen to degrade as the signal-to-interference ratio decreased. Minimal 

loss was incurred between adaptive dimensions N = 1 and N = 5, indicating that 

there may be substantial gain in preprocessing the array data to the dimension 

appropriate for the specific interference scenario. 

The combined sequential block detection-post block processing algorithm was 

implemented on simulated array data for stationary and non-stationary inter- 

ference scenarios. The block detection performance indicated that the observed 
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average time between false alarms was approximately twenty-five times the pre- 

dicted lower bound for N = 1 and ten times the predicted lower bound for N = 5 

for a block size of M = 10. This indicates the need for an improved method of an- 

alytically determining the thresholds required to achieve a specified time between 

false alarms. The non-stationary interference caused a slightly quicker detection 

along with an associated decrease in the average time between false alarms due 

to the non-stationarity of the interference within each block. The post block 

processing algorithm was implemented using the data in the block in which the 

detection occurred and a finite amount of previous data. For weak signals, the 

delay in the block detection was often large enough so that the segment of data 

the post block processing algorithm operated on did not contain the onset of the 

signal. This indicates that using an estimate of the signal-to-interference ratio 

to set the block size or the particular segment of data subjected to post block 

processing may provide improved estimation in the combined algorithm. 

This dissertation has explored the use of a block sequential adaptive scheme 

for the detection of the onset of a narrowband signal at an array of sensors where 

the signal amplitude and phase and the potentially non-stationary interference 

covariance matrix are unknown. The block detection algorithm may be easily ex- 

tended to broadband signals or to narrowband signals with unknown or varying 

frequency by the appropriate combination of block statistics at several discrete 

fourier transform frequency bin outputs. The threshold required for implementa- 

tion may require more, although not substantial, numerical computation. Further 
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research is also suggested in the following related areas: applying the general al- 

gorithm to other array signal models, the method of the block data compression, 

more accurate bounds for the time between false alarms, and online methods of 

choosing the data to be submitted to post block processing. 



Appendix A 

Selected Theorems and Proofs 

The following theorems axe extensions to the complex case of theorems com- 
monly found in the analysis of multivariate real Gaussian random variables and 
real Wishart matrices. Background and distributional information on multivari- 
ate complex Gaussian random variables and complex Wishart matrices may be 
found in Goodman [23] and to a lesser extent Anderson [34]. The original the- 
orems may be found in either Searle [25], Muirhead [24], or DeVroye [35]. The 
extensions are, for the most part, straightforward and result from following the 
proofs for the real cases. When possible, the proofs have been simplified or de- 
ferred. 

THEOREM A.l 

The following theorem is an extension of Theorem 2, Chapter 2, page 57 of 
Searle [25] describing the probability density function of certain quadratic forms 
involving complex Gaussian random vectors. 

Theorem A.l If x ~ CMn (ji, S) and A = AH, then 2xHAx ~ 
X? (6) if and only if AS is idempotent. The non-centrality parameter, 
6 = 2ßHAfx, and the degrees of freedom parameter, r = 2tr(AS), 
where tr (AS) is the trace of AS. 

Proof: For the quadratic form 

Q = 2xH Ax, (236) 

consider the moment generating function 

MQ(t) E stQ 

=   E e „2ixHAx 

Je 7Tn|S| e' 

=    /   —r^rrevdx, 
JC" 7Tn   S 

2ixHAx - (x - ß)H S-1 (x - fi) dx 

(237) 
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where Cn represents n dimensional complex Euclidean space. The exponent, V, 
may be massaged into a single quadratic form in x, 

V 

where 

and 

=   x* (2iA) x - XsE-Xx + j^E^x + xHS-V - A*HS~ V 

= -{x-ßf £-1(x-fi) + fiH£-1ß-nHv-1tt, 

XT1 = E-1 - 2iA 

ß = SS" V- 

The moment generating function thus becomes, 

MQ(t)   = 
exp /^E-^-Z^S-V]   ,   expf-fr-zx^S-'fr-At)' 

Isl 'ISI 
/ 7,-r, 

(238) 

(239) 

(240) 

dx 

exp ß
H (S-^S-1 - S-1) At] 

exp 

|s-xs 
-HH (ln - S-1 (S-1 - 2tA)-1) S-V 

IL, - 2tAS| 

exp \-fiH (ln - (In ~ 2JAS)'1) S-1 A* (241) 
|In-2tAS| 

where In is the n dimensional identity matrix. 
Suppose that AS is idempotent with rank or trace, 

tr (AS) = m. (242) 

Note that the eigenvalues of an idempotent matrix are either zero or one, and, 
by using a singular value decomposition, the matrix AS may be expressed as 

AS = UV*, (243) 

where the n-by-m matrices U and V are orthogonal, 

V*U = Im. (244) 

Part of the matrix in the quadratic form in the exponent of equation (241) may 
now be simplified, 

In - (In - 2tAS)-x   =   In-(ln-U(2t)VH)_1 

=    In I„-U[VHU-^0    V* 

= u,1-l)~v 

i__L_W 
1-24 

(245) 
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The determinant in the denominator of equation (241) is clearly 

|In-2tAS| = (l-2*)m (246) 

because AS has m non-zero eigenvalues, all equal to one. Substituting (245) and 
(246) into (241) results in 

exp 
MQ(t)   =     NW 

.-^A»eXP(l^^A^) 

(1 - 2t)m 

uHAu) 
(247) 

(l-2ip 

The moment generating function of a non-central Chi-squared random variable 
with r degrees freedom and non-centrality parameter 6, as found in Muirhead 
[24], is 

g     2 g2(l—2t) 
MX2   (t)   = -^. (248) 

r's (1 — 2i)2 v      J 

Equating equations (247) and (248), it is seen that the quadratic form, Q, has a 
non-central Chi-squared distribution with r = 2m = 2tr (AS) degrees of freedom 
and non-centrality parameter 6 = 2/J,

H
A/J,. 

If it is assumed that the quadratic form has the described non-central Chi- 
squared distribution, it can be seen that the matrix AS must be idempotent 
with rank equal to tr (AS) = § by equating the denominators of equations (241) 
and (248), 

(1-2*)*   =   |In-2£AS| 

=   f[{l-2tXi), (249) 

where Aj are the eigenvalues of AS. Clearly the left and right sides of equation 
(249) will be equal only when | of the eigenvalues are equal to one with the 
remaining equal to zero, which results in an idempotent AS matrix. 

THEOREM A.2 

The following theorem is the extension of Theorem 4, Chapter 2, page 59 of Searle 
[25] showing the independence of quadratic forms involving complex Gaussian 
random vectors. 

Theorem A.2 If x ~ 0/Vn (/z,S), A = AH and B = B^, then 
xHAx and x5Bx are independent if and only if ASB = BSA = 0. 
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Proof: The proof is identical to that of Searle [25] and, as the result is also 
identical, will not be repeated. 

THEOREM A.3 

The following theorem is an extension of Theorem 3.2.10 on page 93 of Muirhead 
[24] describing the probability density functions of the partitions of a complex 
Wishart matrix and of a particular function of the partitions that enjoys certain 
independence properties. 

Theorem A.3 If the n-by-n matrix A ~ CWn (m, S) with A and £ 
partitioned into two-by-two blocks, 

A   = 

S   = 

where An and Sn are k-by-k, and if 

Au Au 
A2i A22 

Ell Ei2 

E21 S22 

A11.2 = An - Ai2A22
1A2i 

(250) 

(251) 

and 

then 

Sn-2 — En — E12E22 E21, (252) 

CWk (m — n + k, Su.2) and is independent of Ai2 and 1. A11.2 
A22. 

2. The conditional distribution of Ai2 given A22 is 

CA/"fcx(n-fc) (E12E22 -^22, ^n-2 ® ^"22) ' 

3. A22~CW„_fe(m,£22). 

Proof: Consider the probability density function of the complex Wishart dis- 
tributed matrix, A, as found in Goodman [23], 

/(A) 
IA \m—n 

rm,n |E| 
etr (-S-A), (253) 

where 'etr' signifies the matrix exponential trace operation and 

rm,„ = 7r^r(m)-.-r(m-n + i) (254) 
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where T (x) is the standard Gamma function. Applying the k,n — k factorization 
to the determinants of equation (253) yields 

IAI   = |A22| 

|A22| 

An — Ai2A22 A21 

Lll-2| 

and, similarly, 

|S| = IS22I |Si 1-2 

(255) 

(256) 

The determinant of a partitioned matrix may be found in the Matrix Theory 
Appendix of Muirhead [24]. The trace of the matrix product S_1A in equation 
(253) must now be massaged into a form containing the matrix partitions Ai2 

and A22 and the matrix An.2. This requires substantial algebraic manipulation, 
beginning with the matrix factorization of the inverse of the matrix S, 

S~1 = V V11 
v21 

Vi2 

V22 
(257) 

The following relationships between the partitioned matrix and the partitioned 
inverse may be easily verified: 

V11 
y.-l 

vr/Vis 

Sll-2 

= v. 22 

-El2£22 . 

VoiVr/v, 

(258) 

(259) 

(260) 

Applying these to the aforementioned trace results in 

tr(E_1A)    =   tr 
V11 
v21 

V12 

V22 

=   tr 

An   A12 
A21   A22 

V11 An + V12A21   Vn A12 + V12A22 
V2i An + V22A21   V2i A12 + V22A22 

=   tr (ViiAn) + tr (V12A21) + tr (V2iAi2) + tr (V22A22) 

=   tr (ViiAn) + 2tr (Vi2A2i) + tr (V22A22) 

=   tr (Vn [AU.2 + A12A^1 A2i]) + 2tr (V12A2i) + tr (V22A22) 

=   tr (VnAii.2) + tr (VnAiaA^Aai) 

+2tr (V12A21) + tr (V22A22) 

=   tr (Sjf^An.a) + tr (v11A12A^A21) - 2tr (VnEiaE^Aai) 

+tr ([s^1 + VsiV^Vw] A22) 

=   tr (s^An^) + tr (VnAiaA^Aai) - 2tr (ViiE^E^A«) 

+tr (2^2^22) + tr (A22S2-2
1S2iVi1Si2S2-2

1 
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tr (S^2AU.2) + tr (V11A12AJ2
1A21) - tr (VnS^S^1 A21) 

-tr (Vu Ai2S^S21) + tr (S^A,,) 

+tr ^VnSi2S22 A22SJ2 S21J 

tr (E^AU.S) + tr (v£A22) 

+tr V 11 

/ I   A12AJ2 A21 - S12SJ2 A22AJ2 A21 

—Ai2A22 A22£22 S2i 
+Si2S22 A22A22 A22S22 S2i 

=   tr (S^Au^) + tr (s^1 A22) 
\) 

+tr \^>il.i [Si2S22 A22 — A12J A22 

=   tr (s^An.s) + tr (E22 A22) 

A22XI22 £2i — A2i J 

+tr   S 1-1 
'11-2 A12 — Si2So9 A22 A90 *-22 k-12 £l2S22 A22 

iH 

(261) 

Substituting equations (255), (256), and (261) into the probability density func- 
tion of equation (253) yields 

/(A)   = 
^Ur (-ElkAii*)] [^^etr (-^A22) 

•etr   -E '11-2 Aio — El2£o9 A; 12^22 A22 AQO     Aio — £l2£oo A; L22 

■\H 

12^22 -"-22 

k-11-2 
\m—(n—k)—k 

T IV        lm~(' 
lm-(n-fc),fe |-^11-2| 

n=fcjetr (-S11^2AH-2) 

etr   -E^ *-12 E12S22 A22 A"1 A
22 A12 — S12S22 A22 

H 

rm-(n-k),kFm,n-k     IA22I" 
|Si 

|A    .«-(»-*> 
etr (-E^A22) 

rm,n-ifc |E22| 

=   /(A11.2)/(A12|A22)/(A22),    "" (262) 

where it is recognized that An.2 and A22 have complex Wishart distributions, 

A11.2 ~ CWk {m-{n- fc), Sn.2) (263) 

and 

A22~CWn_fc(m,£22), (264) 

thus proving the first and third parts of the theorem. The independence of Au.2 

from A12 and A22 is seen from the factorization of the probability density function 
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of equation (262). The probability density function of A12 conditioned on A22 
may be simplified by considering 

p p (   r(m-w+fc)-r(m-n+l)-r(m)-r(m-n+fc+l) 
1 m-(n-fc),fcl m,n-k     _      I T(m)-T(m-n+l) 

rm>n ~     I .7ri[fc(fc-l)+(n-fc)(n-fc-l)-n(n-l)] 

_        |[fe2-fc+n2-2nfe+fc2-n+fe-n2+n] 

=   7T-fc(n-fc). (265) 

Substituting equation (265) into the conditional probability density function of 
A12 yields 

etrf— S^.2 A12 — E12S22 A22 A22   A12 — Si2S2~2-A-22    J 

/(A12|A22)   =    „k(n-k)w   ifciv—p3*  7Tfc("   V |A22|    IS11.2I 
(266) 

which is recognized as the probability density function of a complex Gaussian 
random matrix, 

A12|A22 ~ CMkx{n-k) (S12SJ2
1A22, S11.2 <8> A22) , (267) 

proving the second part of the theorem. 

THEOREM A.4 

The following theorem is an extension of Theorem 3.2.11 on page 95 of Muirhead 
[24] describing the probability density function of the inverse of a matrix quadratic 
form involving the inverse of a complex Wishart distributed matrix. 

Theorem A.4 If A ~ CWn (m, X), S is full rank, and P is a k-hy-n 
matrix with rank k, then 

(PA-^) _1 - CWk (m-n + k, (PS-1?*) -1) . (268) 

Proof: If E is full rank, it may be factored into 

X = IT*, (269) 

where T is also of full rank. Set 

B = r-1A(rH)"1. (270) 

Since T is constant and of full rank, B is distributed as 

B - CWn (m, In). (271) 
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Define the k-by-n, rank k matrix 

R = p(r*)_1 (272) 

Substituting equations (272) and (270) into the matrix product described in the 
theorem results in 

(PA-
1
?*)"

1
 = (RI^A-

1™*)
-1 

=  (R^A^^'V) 

=   (KB"1!«*)"1. (273) 

Similarly, 

(PE^P*)"1   =   (RT^E^rR*)"1 

=   (RR*)~\ 

-i 

(274) 

Using equations (273) and (274), it is seen that the theorem, as stated in equation 
(268), simplifies to showing that 

(RB-XRH)_1 ~ CWn (m - n + k, (KR
H

) 
_1) . (275) 

Using a singular value decomposition, the matrix R may be factored into 

R = u[lfc   0]VH, (276) 

where U is k-by-k and non-singular and V is n-by-n and orthogonal, 

v-i = yH (277) 

Substituting this factorization into equations (273) and (274) results in 

(RB-'R")     =  iv[h 0 

- (u")_1( 

- K)"'( 

VHB_1V 

h   0 

h   0 

0 
u H 

(V^BV)"1 

c-1 Ifc 
0 

-1 

Ifc 
0 

u 

-1 

u -1 

-1 

where 

C = VKBV, 

(278) 

(279) 
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and 

(RR
H
) 

X
 =  (u[i* 0 

-(- 

=   (UU*) 

h o 
-1 

Ik 
0 

0 
-1 

u- H 

Let 

and 

C = 

C -l D 

Cn     Ci2 
C21   C22 

Du   Di2 

D21   D22 

(280) 

(281) 

(282) 

be k-by-n — k partitions of C and D = C I Then, equation (278) becomes 

(RB-
1
^)

-1
 = (U^'D^TT

1 

-   (U^'^n-aU-1, (283) 

where Cn.2 is as defined in Theorem A.3 and, as seen in Muirhead [24], is equal 
to D^1. Since V is orthogonal, C is distributed as 

C~CWn(m,I„). (284) 

Applying part (i) of Theorem A.3, it is seen that 

Cn.2 ~ CWk (m-n + k, Ik), (285) 

which, when applied to equation (283), results in 

(KB-1!**)"1   ~   CWk(m-n + k,(\J\JHy1') 

~   CWk (m-n + k, (RR
K

)
_1

), (286) 

which completes the proof. 

THEOREM A.5 

The following theorem is an extension of Theorem 3.2.12 on page 96 of Muirhead 
[24] describing the probability density function of the ratio of quadratic forms 
involving the inverse of the scale matrix and the inverse of a random sample of a 
complex Wishart distribution. It is interesting to note that the resulting distri- 
bution does not depend on the vector in the quadratic forms if it is independent 
of the complex Wishart distributed matrix. 
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Theorem A.5 If A ~ CW„ (m, E) where m > n - 1 and if y is any 
n-by-1 random vector independent of A such that Pr (y = 0) = 0, 
then 

2SS~^-+i" (287) 

and is independent of y. 
Proof: In Theorem A.4, let P = yH. Then, 

W = (yHA-1
yy

l ~CW1(rn-n+ 1, (y^E-V)"1) , (288) 

which has probability density function, 

\w\ ^etrj-f) 
fw{w)   =   r(m-n + l)|C-n+i 

wm~ne~? (289) 
r (m - n + 1) öm-n+1' 

where 

^(y^E-V)"1- (290) 

Performing the transformation 

6 yHA~xy 

yields the desired scaled ratio of quadratic forms in equation (287). The proba- 
bility density function of Z is found to be 

_ 0(f)m-ne-f 

*z^   ~   r (m - n + 1) 20™~"+1 

^m—n+l—lg—2 

r (m - n + 1) 2m~"+1 

Z2  xe 2 

r(i)2i' 
(292) 

where 

r = 2(m-n + l), (293) 

which is a central Chi-squared distribution with 2 (m - n + 1) degrees of freedom. 
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The following theorem is based on a result found in DeVroye [35]. 

Theorem A.6 If W ~ X% and V ~ X^ are independent then 

W + V     H     V2' 2 

Proof: Consider the transformation 

(w, v) - (z, y), 

where 

y = y 

and 

Z = 
W 

w + v 
The range of Y and Z are 

and 

0<y < oo 

0<Z<1. 

Inverting the above one-to-one transformation yields 

V = Y 

and 

W = 
-ZY 

Z-t 

(294) 

(295) 

(296) 

(297) 

(298) 

(299) 

(300) 

The Jacobian matrix of the transformation, the partial derivatives of (W, V) with 
respect to (Z,Y), is 

J = 
Y -Z 

(Z-\f     z-\ 
0 1 

(301) 

The absolute value of the determinant of the Jacobian matrix is 

Y 
Ull = (Z-l) 2* (302) 
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The joint probability density function of Z and Y has the form 

fzr{z,v) = fv,w(v,--^i)M\. (303) 

If W ~ Xn and V ~ Xm> and are independent, their joint probability density 
function is 

rwl) (TW2Fj' (304) 

Substituting equation (304) into (303) results in 

fz,y{z,y)   = 

r(f)r(f)2^ 

*V\(1 7 Tl"1 (iTV») , (305) 

where 

and 

m + n 
P=—7T— (306) 

Ö = 2 (1 - z). (307) 

The probability density function for Z is found by marginalizing over Y, 

fz,Y{z,y)dy 

= r(f)r(f)2^r(p)ÖPX=or(^dy 

r (?) r (f) 2ft 

=    r(afg) 
r (?) r (?) 

where it is recognized that 

•^r/vi^U 2 ;(211 z)) 

(l-*)*"1, (308) 

r~|TV» (309) 

because it is the integral of the probability density function of a standard Gamma 
random variable with p degrees of freedom and scale 8. In its final form, equa- 
tion (308) is recognized as a standard Beta probability density function with 
parameters f and ?. 



Appendix B 

Non-Central F Distribution Approximation 

As seen in appendix C, the non-central Fisher's / density function requires 
the evaluation of an infinite summation. As evidenced by Tiku in [26], there exist 
several methods for approximating the upper tail probability of this distribution. 
The Three-Moment Approximation is indicated as the most reasonable in terms 
of computational requirements and accuracy. The probability density function 
may be evaluated by differentiating and negating the upper tail probability. The 
following outlines this procedure as applied to Tiku's Three-Moment Approxima- 
tion utilizing Streit's [36] description of the upper tail probability approximation. 

B.l    Upper Tail Probability 

Let the upper tail probability of a non-central Fisher's / distribution with rti 
and n2 degrees of freedom and non-centrality parameter 8 be defined by 

roo 
Q(x\n1,n2,6)=        f(z\n1,n2,S)dz. 

Jz—x 

Tiku's Three Moment Approximation states that 

Q(x\ni,n2,6) -M^y^) ' 

(310) 

(311) 

where I (y\a,ß) describes the incomplete Gamma function 

/(*'«=OT)£'°-1(1-^lrfi' 
and 

b 

(312) 

y = 

-\ -i 

i + 
n2h 

(x + c) (313) 

126 
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b = 

h = 

c = 

H = 

K = 

E = 

n2 - 2 /    E 
E-A 

-1 

bH 

nxK (2b + n2 - 2) 
n2 

h-1  
n2 - 2 

f 2 (m + <5)3 + (m + 3<5) (n2 - 2)2 

\    +3 (ni + S) (nx + 2(5) (n2 - 2) 

(n1+<5)2 + (n2-2)(n1 + 2<5) 

^! 
K3' 

(314) 

(315) 

(316) 

(317) 

(318) 

(319) 

B.2    Probability Density Function 

The non-central Fisher's / probability density function may be described as 

f(x\ni,n2,S) —x-Q(x\ni,n2,6) 

d    ( ,n2  b\ 

dx 

d    ( .Ti2  b' 
(320) 

Differentiating equations (313) and (312) yields respectively 

-2 
dy 
dx \n2h/ 

by2 

1 + 
b 

n2h 
(x + c) 

n2fr 

and 

dxI{x\a,P)-v{a)T{ß)x      (1    x)      . 

Substitution into equation (320) results in the approximation 

f b \    rVa2LJ    „aa+i 

(321) 

(322) 

/(x|ni,n2,<5) "2/ 
l^Äi r (f) r (|) 

where ?/, b, and /i are described by equations (313) - (319) 

(i-y)1 (323) 



Appendix C 

Statistical Distributions 

For the convenience of the reader, a list of the probability density functions, 
along with certain properties, of the random variables encountered in this dis- 
sertation is included in this appendix. This material may be found in most 
mathematical statistics texts with the exception of the chi-squared and Fisher's 
/ non-central random variables which may be found in most linear models texts. 
Some specific references are Manoukian [37], Muirhead [24], and Johnson and 
Kotz [26]. 

Beta        X ~ Beta (a, ß)        a > 0, and ß > 0 

PDF: / (*) = i^fgj^-1 (1 - x)ß~*    0<x<l. 

Mean: E [X] = ^ 

Variance:    Var [X] = {a+ß/{
ß

a+ß+1) 

Chi-Squared X ~ X% where n is a positive integer 

PDF: f(x) = xV?~? x>0 

Mean: E[X] = n 

Variance: Var [X] = 2n 

MGF: Mx (t) = (1 - 2t)"a     t < \ 

128 
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Complex Multivariate Normal x ~ CMn (#, S) 

PDF: / (x) =    i   e-^-^13-1^-^ 

Mean: E [x] = \i 

Covaxiance:    E (x - fi) (x - y) = E 

Complex Wishart A ~ CWn (m, S) 

PDF:     / (A) = J^retr (-S-1 A) 

rm>n = 7THirfiir(m)---r(m-n+l) 

Mean:    E [A] = mS 

Note:     If Xi ~ CAf„ (0, S) and A = £^ x*xf then A ~ CWn (m, S) 

Fisher's F        X ~ /ni,n2 where nx and n2 are positive integers 

pDF. f (x) -    T(y±)    n?n?X^ 0 
PDF. / (x) - r(k)r(4) (n2+nil)^ 

> 

Mean: E [X] = ^ n2 > 2 

Variance: Var [X] = ^^) ^>4 

Gamma X ~ Gamma (a, ß) where a > 0 and ß > 0 

PDF: / (x) = jgja;a"1e-/'x    x>0 

Mean: E [X] = § 

Variance:    Var [X] = ^ 

MGF: Mx{t)= (l-f)_a     *<£ 
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Non-Central Chi-Squared        X ~ X% (8) where 8 > 0 and n is a positive 
integer 

PDF: /(z) = £ ^—^—< "    x>0 

to    k]-    2f+fer (f + *) 
Mean: E [X] = n + 8 

Variance:    Var [X] = 2n + 48 

UGF: Mx(t) = *^^ *<5 

Non-Central F X ~ fnun2 (8) where 8 > 0, and ni and n2 are positive 
integers 

x   / - \ k / \ no      ni   , ,      _ , 
L+fc-1 

PDF: / (s) = £        ^ ^ Z n2
2 nx

2 + x"f+fc-1 

fc=0 fc! r(f + ^)r(f)(n2 + n1,)^
+fc 

Mean: E[X] = ^±| ni(n2-2) 

Variance:    Var [X] = 2 (?)2 [feig^fflfe-1] 

a; > 0 

n2 > 2 

n2 > 4 



Bibliography 

[I] E. S. Page, "Continuous Inspection Schemes," Biometrika, vol. 41, pp. 100- 
114, 1954. 

[2] S. Haykin and A. 0. Steinhart, eds., Adaptive Radar Detection and Estima- 
tion. John Wiley & Sons, 1992. 

[3] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and 
Applications. Prentice-Hall, 1993. 

[4] T. H. Kerr, "The Controversy over the use of SPRT and GLR Techniques 
and Other Loose Ends in Failure Detection," in Proceedings of American 
Control Conference, pp. 966-977, 1983. 

[5] M. Basseville and A. Benveniste, eds., Detection of Abrupt Changes in Sig- 
nals and Dynamical Systems. Springer-Verlag, 1986. 

[6] B. D. Brumback and M. D. Srinath, "A Chi-Square Test for Fault Detection 
in Kaiman Filters," IEEE Transactions on Automatic Control, vol. 32, no. 6, 
pp. 552-554, June 1987. 

[7] T. H. Kerr, "Duality Between Failure Detection and Radar/Optical Maneu- 
ver Detection," IEEE Transactions on Aerospace and Electronic Systems, 
vol. 25, no. 4, pp. 581-584, July 1989. 

[8] T. Dyson, Topics in Nonlinear Filtering and Detection. PhD thesis, Prince- 
ton University, 1986. 

[9] B. Broder, Quickest Detection Procedures and Transient Signal Detection. 
PhD thesis, Princeton University, 1990. 

[10] R. J. Stahl, "An Application of Page's Test for Detecting a Sinusoidal Dis- 
turbance of Unknown Frequency and Phase," Master's thesis, University of 
Connecticut, 1991. 

[II] S. D. Blostein, "Quickest Detection of a Time-Varying Change in Distribu- 
tion," IEEE Transactions on Information Theory, vol. 37, no. 4, pp. 1116- 
1122, July 1991. 

131 



132 

[12] I. S. Reed, J. D. Mallet, and L. E. Brennan, "Rapid Convergence Rate 
in Adaptive Arrays," IEEE Trans, on Aerospace and Electronic Systems, 
vol. AES-10, no. 6, pp. 853-863, Nov. 1974. 

[13] E. J. Kelly, "An Adaptive Detection Algorithm," IEEE Trans, on Aerospace 
and Electronic Systems, vol. AES-22, no. 1, pp. 115-127, March 1986. 

[14] F. C. Robey, "A Covariance Modeling Approach to Adaptive Beamforming 
and Detection," Tech. Rep. 918, Lincoln Laboratory, July 1991. 

[15] W. S. Chen and I. S. Reed, "A New CFAR Detection Test for Radar," in 
Digital Signal Processing I, pp. 198-214, Academic Press, 1991. 

[16] R K. Willett, "Signal Detection Theory." Notes from course at University 
of Connecticut, Spring 1992. 

[17] G. Lorden, "Procedures for Reacting to a Change in Distribution," The 
Annals of Mathematical Statistics, vol. 42, no. 6, pp. 1897-1908, 1971. 

[18] G. V. Moustakides, "Optimal Stopping Times for Detecting Changes in Dis- 
tributions," The Annals of Statistics, vol. 14, no. 4, pp. 1379-1387, 1986. 

[19] Johnson and Kotz, eds., Encylcopedia of Statistical Sciences, vol. 1, pp. 77- 
81. John Wiley & Sons, 1982. 

[20] L. L. Scharf, Statistical Signal Processing. Addison Wesley Publishing Com- 
pany, 1991. 

[21] K. S. Miller, Hypothesis Testing with Complex Distributions. Robert E. 
Krieger Publishing Co., 1980. 

[22] Johnson and Kotz, eds., Encylcopedia of Statistical Sciences, vol. 4, pp. 219- 
225. John Wiley & Sons, 1983. 

[23] N. R. Goodman, "Statistical Analysis Based on a Certain Multivariate Com- 
plex Gaussian Distribution (An Introduction)," The Annals of Mathematical 
Statistics, vol. 34, pp. 152-177, March 1963. 

[24] R. J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley & 
Sons, 1982. 

[25] S. R. Searle, Linear Models. John Wiley & Sons, 1971. 

[26] Johnson and Kotz, eds., Encylcopedia of Statistical Sciences, vol. 6, pp. 276- 
284. John Wiley & Sons, 1985. 

[27] M. L. Tiku, "Laguerre Series Forms of Non-central x2 and F Distributions," 
Biometrika, vol. 53, pp. 415-427, 1965. 



133 

[28] G. H. Hardy, J. E. Littlewood, and G. Pölya, Inequalities. Cambridge Uni- 
versity Press, 1967. 

[29] N. L. Owsley and D. A. Abraham, "Preprocessing for High Resolution Beam- 
forming," in Proceedings of 23rd Asilomar Conf. on Signals, Systems and 
Computers, 1989. Also Naval Underwater Systems Center Reprint Rpt. 8651, 
3 Nov. 1989. 

[30] K. A. Burgess and B. D. Van Veen, "Improved Adaptive Detection Perfor- 
mance via Subspace Processing," in Proceedings of IEEE International Con- 
ference on Acoustics, Speech and Signal Processing, pp. V-353-356, 1992. 

[31] D. A. Gray, "Formulation of the maximum signal-to-noise ratio array pro- 
cessor in beam space," Journal of the Acoustical Society of America, vol. 72, 
no. 4, pp. 1195-1201, 1982. 

[32] N. L. Owsley, "Enhanced Minimum Variance Beamforming," Tech. Rep. 
8305, Naval Underwater Systems Center, Nov. 1988. 

[33] T. Kailath, Linear Systems. Prentice-Hall, 1980. 

[34] T. W. Anderson, An Introduction to Multivariate Statistical Analysis. John 
Wiley & Sons, 1984. 

[35] L. DeVroye, Non-Uniform Random Variate Generation. Springer-Verlag, 
1986. 

[36] R. L. Streit, "An Upper Bound on Feature Vector Dimension as a Function 
of Design Set Size for Two Gaussian Populations," Tech. Memo. 921048, 
Naval Undersea Warfare Center, March 1992. 

[37] E. B. Manoukian, Modern Concepts and Theorems of Mathematical Statis- 
tics. Springer-Verlag, 1985. 



INITIAL DISTRIBUTION LIST 

Addressee No. of Copies 

Coast Guard Academy (J. Wolcin) 1 
Office of Naval Research (Code 451: T. G. Goldsberry, N. Harried, M. Shipley) 3 
Program Executive Officer, USW ASTO (J. Polcari) 
Space and Naval Warfare Systems Command (R. Holland) 
Naval Undersea Warfare Center, Detachment West Palm Beach (R. Kennedy) 
Pennsylvania State University (R. Young) 
Princeton University (S. Schwartz) 
Defense Technical Information Center 


